
	

Starting and Scaling DevOps
in the Enterprise

Gary Gruver

Copyright © 2016 Gary Gruver

Print ISBN: 978-1-48358-358-7

eBook ISBN: 978-1-48358-359-4

All rights reserved.

Elephant pictures by Amelia Tiedemann

Graphics by Shahla Mahdavi and Cassie Lydon of Katie Bush design

TABLE OF CONTENTS

About the Author 1

Acknowledgments 3

Forward 5

Chapter 1 - DevOps and the Deployment Pipeline 7

Chapter 2 - The Basic Deployment Pipeline 17

Chapter 3 - Optimizing the Basic Deployment Pipeline 25

Chapter 4 - Scaling to a Team with Continuous Integration 46

Chapter 5 - Scaling Beyond a Team 51

Chapter 6 - Scaling with Loosely Coupled Architectures 58

Chapter 7 - Documenting the Deployment Pipeline for Tightly

Coupled Architectures 64

Chapter 8 - Optimizing Complex Deployment Pipelines 69

Chapter 9 - Practices for Tightly versus Loosely Coupled

Architectures 82

Chapter 10 - The Impact of Moving to DevOps in Larger, More

Complex Organizations 90

Bibliography 93

1

ABOUT THE AUTHOR
Gary Gruver is an experienced executive with a proven track record
of transforming software development and delivery processes in
large organizations, first as the R&D director of the LaserJet firm-
ware group that completely transformed how they developed
embedded firmware and then as VP of QA, Release, and Operations
at Macy’s.com where he led the journey toward continuous delivery.
He now consults with large organizations and runs workshops to
help them transform their software development and delivery pro-
cesses. He is the co-author of Leading the Transformation: Applying
Agile and DevOps Principles at Scale and A Practical Approach
to Large-Scale Agile Development: How HP Transformed LaserJet
FutureSmart Firmware.

Website: GaryGruver.com

Twitter: @GRUVERGary

Linkedin: https://www.linkedin.com/in/garygruver

Email: gary@garygruver.com

3

ACKNOWLEDGMENTS
Many people have contributed to this book. I would like to thank
everyone I have worked with over the years who helped me better
understand how to develop software. The ideas shared in this book
are an accumulation of everything I have learned from working with
each of you on a constant journey of improving software develop-
ment processes. Without these discussions and debates, my under-
standing would not be as rich and the book would not be as complete.

I would like to especially thank all the clients of the executive and
execution workshops for letting me join you on your journey.
Sharing the challenges you were facing and the improvements that
worked helped to fine tune the content of this book. Thanks also to
Paul Remeis and Greg Lonnon for helping to fine tune the content by
helping me deliver and improve the execution workshops.

I would like to thank everyone that has taken time to give me feed-
back on early versions of the book (in alphabetical order): John
Ediger, Mirco Hering, Jez Humble, Tommy Mouser, and Vinod
Peris. Your input significantly improved the final product.

I would also like to thank the editorial and production staff: Kate
Sage, the editor, did a great job of forcing me to clarify the ideas
so they could be communicated clearly and concisely. The back and
forth made for a better book, but more importantly it required me
to crisp up the concepts, enabling me to be more efficient at helping
others on their journeys. Shahla Mahdavi and Cassie Lydon from
Katie Bush design provided most of the graphics. They did a great
job if creating visual artifacts to help communicate the ideas I am
trying to get across. Finally, I would like to thank Amelia Tiedemann
for the wonderful elephant pictures and cover design. I feel she was
really helpful in communicating that a successful DevOps transfor-
mation requires more than just having all the right parts.

5

FORWARD
When David Farley and I wrote the Continuous Delivery book, we
thought we were tackling a dusty, niche corner of the software deliv-
ery lifecycle. We didn’t expect a huge amount of interest in the book,
but we were sick of seeing people spending weeks getting builds
deployed into testing environments, performing largely manual
regression testing that took weeks or months, and spending their
nights and weekends getting releases out of the door, often accom-
panied by long outages. We knew that much of the software delivery
process was hugely inefficient, and produced poor outcomes in terms
of the quality and stability of the systems produced. We could also
see from our work in large enterprises that the tools and practices
existed that would remove many of these problems, if only teams
would implement them systematically.

Fortunately, we weren’t the only ones who saw this. Many oth-
ers—including Gary—had come to the same conclusion across the
world, and the DevOps movement was born. This movement has
had unprecedented success, primarily because these ideas work. As
I’ve worked with leaders in large, regulated companies, and most
recently as a US federal government employee at 18F, I’ve seen order
of magnitude improvements in delivery lead times accompanied by
improvements in quality and resilience, even when working with
complex, legacy systems.

Most important of all, I’ve seen these ideas lead to happier tech-
nology workers and end users. Using continuous delivery, we can
build products whose success derives from a collaborative, experi-
mental approach to product development. Everybody in the team
contributes to discovering how to produce the best user and organi-
zational outcomes. End users benefit enormously when we can work
with them from early on in the delivery process and iterate rapidly,

6 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

changing the design of systems in response to their feedback, and
delivering the most important features from early on in the prod-
uct lifecycle.

Gary has been applying ideas from the Continuous Delivery and
DevOps playbook from well before these terms became popu-
lar, starting with his work at HP leading the FutureSmart LaserJet
Firmware team. His large, distributed team applied continuous deliv-
ery to printer firmware, and showed the transformational results
this created in terms of quality and productivity in a domain where
nobody cared about frequent deployments. Then he went on to do
the same thing in a regulated organization with complex, tightly
coupled legacy systems.

Today’s technology leaders understand the urgency of transforming
their organizations to achieve both better quality and higher produc-
tivity. Effective leadership is essential if these kinds of transforma-
tion are to succeed. However overcoming the combined obstacles of
organizational inertia, silo-based thinking and high levels of archi-
tectural complexity can seem like an overwhelming task. This book
provides a concise yet thorough guide to the engineering practices
and architectural change that is critical to achieving these break-
through results, from a leader’s perspective.

This book won’t make your journey easy—but it will serve as an
invaluable map to guide your path. Happy travels!

Jez Humble

7

Chapter 1

DEVOPS AND THE
DEPLOYMENT PIPELINE

Software is starting to play a much larger role in how companies
compete across a broad range of industries. As the basis of compe-
tition shifts to software, large traditional organizations are finding
that their current approaches to managing software are limiting
their ability to respond as quickly as the business requires. DevOps
is a fundamental shift in how leading edge companies are starting
to manage their software and IT work. It is driven by the need for
businesses to move more quickly and the realization that large soft-
ware organizations are applying these DevOps principles to develop
new software faster than anyone ever thought possible. Everyone is
talking about DevOps.

In my role, I get to meet lots of different companies, and I realized
quickly that DevOps means different things to different people. They
all want to do “DevOps” because of all the benefits they are hearing
about, but they are not sure exactly what DevOps is, where to start,
or how to drive improvements over time. They are hearing a lot of
different great ideas about DevOps, but they struggle to get every-
one to agree on a common definition and what changes they should
make. It is like five blind men describing an elephant. In large orga-
nizations, this lack of alignment on DevOps improvements impedes
progress and leads to a lack of focus. This book is intended to help
structure and align those improvements by providing a framework
that large organizations and their executives can use to understand
the DevOps principles in the context of their current development
processes and to gain alignment across the organization for success-
ful implementations.

8 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

Part of the issue with implementing DevOps principles and prac-
tices is that there are so many ideas out there about what DevOps
is, and so many different ways to define it. The most consistent and
comprehensive definition I have heard lately is from Gene Kim, a
co-author of The Phoenix Project and The DevOps Handbook. He is
a great thought leader and evangelist for the DevOps movement. In
order to get us all on the same page for our work here, we will use his
definition of DevOps:

DevOps should be defined by the outcomes. It is those
sets of cultural norms and technology practices that
enable the fast flow of planned work from, among other
things, development through tests into operations, while
preserving world class reliability, operation, and secu-
rity. DevOps is not about what you do, but what your
outcomes are. So many things that we associate with
DevOps, such as communication and culture, fit under-
neath this very broad umbrella of beliefs and practices.

People have such different views of DevOps because what it takes to
improve quality and flow at every step, from a business idea all the
way out to working code in the customer’s hands, differs for different
organizations. The DevOps principles designed to improve this pro-
cess are a lot about implementing changes that help coordinate the
work across teams. The movement started with leading edge, fairly

CHAPTER 1 DEVOPS AND THE DEPLOYMENT PIPELINE 9

small companies that were delivering code more frequently than
anyone thought possible. DevOps was also very successful in large
organizations like Amazon where they re-architected their mono-
lithic system to enable small teams to work independently. More
recently, DevOps has started being leveraged into large organiza-
tions with tightly coupled architectures that require coordinating
the work across hundreds of people. As it started scaling into these
larger more complex organizations, the problem was that people
started assuming the approaches for successfully coordinating the
work across small teams would be the same and work as well for
coordinating the work across large organizations. The reality is that
while the principles are the same for small and complex, the imple-
mentations can and should be different.

Most large organizations don’t have that context as they start their
DevOps journey. They have different people in different roles who
have gone to different conferences to learn about DevOps from pre-
sentations by companies with different levels of complexity and dif-
ferent problems and have come back with different views of what
DevOps means for them, like when the five blind men describe the
elephant. Each stakeholder gives a very accurate description of their
section of the DevOps elephant, but the listener never gets a very
good macro view of DevOps. So, when they go to create their own
elephant, nobody can agree on where to start, and they frequently
want to implement ideas that worked well for small teams, but are
not designed for complex organizations that require coordinating
the work of hundreds of people. The intent of this book is to provide
the overall view of the elephant to help large organizations gain a
common understanding of the concepts and provide a framework
they can use to align the organization on where to start and how to
improve their software development processes over time.

This is important because if you can’t get people in a large organiza-
tion aligned on both what they are going to build and what approach
they are going to use for prioritizing improvement, they are not
very likely to deliver a DevOps implementation that will deliver the
expected results. It will potentially have pieces of the different things

10 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

that the organization has heard about DevOps, but it won’t really
help the organization deliver code on a more frequent basis while
improving or maintaining all aspects of quality. It is like having the
five blind men build an elephant based on their understanding of the
animal. It may have all the right parts, but it doesn’t really look like
or work like an elephant because they don’t have a good macro view
of the animal.

To clarify the macro view of DevOps, we will look at how a business
idea moves to development, where a developer writes code, through
the creation of the environment to how code gets deployed, tested,
and passed into production where it is monitored. The process of
moving from a business idea all the way out to the customer using a
deployment pipeline (DP) was originally documented by Jez Humble
and David Farley in their book Continuous Delivery. This book will
leverage that framework extensively because I believe it represents
the basic construct of DevOps. It captures the flow of business ideas
to the customer and the quality gates that are required to maintain
or improve quality.

It is my personal experience that creating, documenting, automat-
ing, and optimizing DPs in large software/IT organizations is key
to improving their efficiency and effectiveness. You already have in
place something that you are using to get code through your organi-
zation from idea to production, which is your DP. But documenting

CHAPTER 1 DEVOPS AND THE DEPLOYMENT PIPELINE 11

that so everyone has a common view and optimizing it based on
using value stream mapping is a key tool in this process that helps
to align the organization. The DP defines and documents the flow of
code through the system, and value stream mapping the DP helps to
identify bottlenecks and waste and other inefficiencies that can be
addressed using DevOps techniques. Improving it will require a lot
of organizational change management, but the DP will help every-
one understand what processes are being changed at any one time
and how they should start working differently.

The DP for a large organization with a tightly coupled architecture
is a fairly complex concept to grasp. Therefore, in Chapter 2, we will
start with the simplest example of a DP with one developer and will
show the inefficiencies that can occur with one developer. Then,
in Chapter 3, we will highlight the DevOps approaches that were
designed to address those issues. We will also show the metrics you
can start collecting to help you understand the magnitude of your
inefficiencies so you can align your organization on fixing the issues
that will provide the biggest benefit.

Once the basic construct of the DP is well understood, in Chapter
4 we will show how the complexity changes as you start scaling the
DP from one developer to a team of developers. Having a team of
developers working together on an application while keeping it close
to release quality is a fundamental shift for most traditional organi-
zations. It requires some different technical approaches by the devel-
opers, but it also requires a cultural shift that prioritizes keeping the
code base stable over creating new features. This will be a big shift for
most organizations, but it is very important because if you can’t get
the developers to respond to the feedback from the DP, then creating
it will be of limited value.

The next big challenge large organizations have after they have had
some success at the team level concerns how to scale DevOps across
a large organization. They typically approach it by trying to get the
rest of the organization to do what they did because of the bene-
fits it provided. This overlooks the fact that the biggest barriers to

12 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

adoption are not technical, but instead involve organizational change
management and getting people to work differently. The key to this
adoption is helping the broader organization understand the prin-
ciples, while providing as much flexibility as possible to allow them
to develop and take ownership of their plans. In order to make this
adoption of principles as flexible as possible, in Chapter 5 we will
cover how to segment the work in large organizations into the small-
est pieces possible to enable local control and ownership. For some
organizations with loosely coupled architectures, this will result in a
lot of small, independent teams where you only have to coordinate
the work across tens of people. For other organizations with tightly
coupled architectures that require large applications to be developed,
qualified, and released together, this will require coordinating the
work across hundreds of people. It is important to start by grouping
applications into these types because the things you do to coordi-
nate the work across tens of people will be different than the types
of things you do to coordinate the work across hundreds of people.
While small teams will always be more efficient and deploy more
frequently, the process of documenting, automating, and continu-
ally improving DPs is much more important for coordinating work
across hundreds of people because the inefficiencies across large
organizations are much more pronounced.

In Chapter 6, we will provide a quick overview of the approaches
that work well for large organizations with small teams that can work
independently. This topic will not be covered in a lot of detail because
most available DevOps material already covers this very well. In
Chapter 7, we will start addressing the complexities of designing a
DP for large, tightly-coupled systems. We will show how to break
the problem into smaller more manageable pieces and then build
those up into more complex releasable systems. In Chapter 8, we
cover how to start optimizing these complex DPs, including met-
rics, to help focus changes in the areas where they will most help the
flow through the system. In Chapter 9, we will review and highlight
the differences between implementing improvements for small inde-
pendent teams and for large complex systems.

CHAPTER 1 DEVOPS AND THE DEPLOYMENT PIPELINE 13

Changing how a large organization works is going to take a while,
and it is going to require changing how everyone both thinks about
and does their actual work. A couple of things are important to con-
sider when contemplating this type of organizational change: first,
start where it provides the most benefit so you can build positive
momentum, and second, find executives that are willing to lead
the change and prioritize improvements that will optimize the DP
instead of letting teams sub-optimize their segment of the DP.

Once the DP is in place, it provides a very good approach for trans-
forming how you manage large and complex software projects.
Instead of creating lots of management processes to track prog-
ress and align different teams, you use working code as the forcing
function that aligns the organization. Requiring all the different
Development teams to integrate their code on a regular basis and
ensure it is working with automated testing forces them to align their
software designs without a lot of management overhead.

The move to infrastructure as code, which was spearheaded by Jez
Humble and David Farley and involves treating all aspects of the
software development process with the same of rigor as application
code, provided some major breakthroughs. It requires that the pro-
cess for creating environments, deploying code, and managing data-
bases be automated with code that is documented and tracked in a
source code management (SCM) tool just like the application code.
This move to infrastructure as code forces a common definition of
environments and deployment processes across Development, QA,
and Operations teams and ensures consistency on the path to pro-
duction. Here again it is working code that helps to align these dif-
ferent groups.

Moving to infrastructure as code increases direct communication
between Development and Operations, which is key to the success of
all sorts of cultural and structural shifts DevOps requires. People no
longer log on to computers and make changes that can’t be tracked.
Instead they work together on common scripts for making changes
to the infrastructure that can be tracked in SCM tool. This requires

14 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

them, at minimum, to document any changes they are making so
everyone can see what they are doing, and ideally it forces them to
communicate directly about the changes they are making so they
can ensure those changes will work in every stage in the DP all the
way out to production. Having to use common code and common
tools forces the collaboration. The effect that this collaboration has
on efficiency cannot be underestimated. Since the teams are aligned
by having to ensure their code works together on a daily basis, man-
agement processes do not need to be put in place to address those
issues. Software is notoriously hard to track well with management
processes. Getting status updates everywhere doesn’t work that well
and takes a lot of overhead. It is more efficient if the teams resolve
issues in real time. Additionally, it is much easier to track progress
using the DP because instead of creating lots of different managerial
updates, everyone can track the progress of working code as it moves
down the pipeline.

This approach of a rigorous DP with infrastructure as code and auto-
mated testing gating code progression is significantly different from
the approach ITIL uses for configuration management. Where the
ITIL processes were designed to ensure predictability and stability,
the DevOps changes have been driven by the need to improve speed
while maintaining stability. The biggest changes are around configu-
ration management and approval processes. The ITIL approach has
very strict manual processes for any changes that occur in the con-
figuration of production. These changes are typically manually docu-
mented and approved in a change management tool with tickets. The
approved changes are then manually implemented in production.
This approach helped improve stability and consistency, but slowed
down flow by requiring lots of handoffs and manual processes. The
DevOps approach of infrastructure as code with automated testing
as gates in the DP enables better control of configuration and more
rigors in the approval process, while also dramatically improving
speed. It does this by automating the process with code and hav-
ing everything in the SCM tool. The code change being proposed is
documented by the script change in the SCM. The approval criteria

CHAPTER 1 DEVOPS AND THE DEPLOYMENT PIPELINE 15

for accepting the change is documented by automated tests that are
also in the SCM. Additionally, you know exactly what change was
implemented because it was done with the automation code under
revision control. The whole approach puts everything required for
change management in one tool with automation that is much easier
and quicker to track. It also improves the rigors in the approval pro-
cesses by requiring the people who traditionally approve the changes
to document their criteria via automated tests instead of just using
some arbitrary management decision for each change.

This approach provides some huge benefits for auditing and regula-
tory compliance. Where before the audit team would have to track
the manual code changes, approval processes, and implementations
in different tools, it is now all automated and easily tracked in one
place. It dramatically improves compliance because computers are
much better than humans at ensuring the process is followed every
time. It is also easier for the auditing team because all the changes
are documented in a (SCM) tool that is designed for automatically
tracking and documenting changes.

These changes are dramatically improving the effectiveness of large
organizations because they improve the flow of value while main-
taining stability. Most importantly, though, is that setting up and
optimizing a DP requires removing waste and inefficiencies that have
existed in your organization for years. In order to improve the flow,
you will end up addressing lots of inefficiencies that occur in coor-
dinating work across people. The productivity of individuals will be
improved by better quality and faster feedback while they are writing
code, but the biggest benefits will come from addressing the issues
coordinating the work within teams, across teams, and across orga-
nizations. It will require technical implementations and improve-
ment, but by far the biggest challenge is getting people to embrace
the approaches and change how they work on a day-to-day basis.
These changes will be significant, but the benefits will be dramatic.

16 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

Summary
As software becomes the basis of competition, how we currently
manage software limits the kinds of quick responses that businesses
require. This is where DevOps steps in. It is all about improving
speed while maintaining all aspects of quality. As businesses embark
on DevOps journeys, though, they are finding that there are myriad
ideas out there about what DevOps is and how it is defined. As this
book will address, most large organizations don’t have a good frame-
work for putting all these different ideas into context as they start
their DevOps journey. This makes it difficult to get everyone work-
ing together on changes that will improve the end-to-end system.
People working in a large organization need to be aligned on what
they are going to build and need to find ways to prioritize improve-
ment or else they won’t implement DevOps in ways that will deliver
the expected results. As this book will show, documenting, automat-
ing, and optimizing DPs in large software/IT organizations improves
efficiency and effectiveness and offers a very good approach for
transforming how you manage large and complex software projects.

17

Chapter 2

THE BASIC
DEPLOYMENT PIPELINE

The DP in a large organization can be a complex system to under-
stand and improve. Therefore, it makes sense to start with a very
basic view of the DP, to break the problem down into its simplest
construct and then show how it scales and becomes more complex
when you use it across big, complex organizations. The most basic
construct of the DP is the flow of a business idea to development
by one developer through a test environment into production. This
defines how value flows through software/IT organizations, which is
the first step to understanding bottlenecks and waste in the system.
Some people might be tempted to start the DP at the developer, but
I tend to take it back to the flow from the business idea because we
should not overlook the amount of requirements inventory and inef-
ficiencies that waterfall planning and the annual budgeting process
drive into most organizations.

The first step in the pipeline is communicating the business idea to
the developer so they can create the new feature. Then, once the new
feature is ready, the developer will need to test it to ensure that it is
working as expected, that the new code has not broken any existing
functionality, and that it has not introduced any security holes or
impacted performance. This requires an environment that is repre-
sentative of production. The code then needs to be deployed into the
test environment and tested. Once the testing ensures the new code
is working as expected and has not broken any other existing func-
tionality, it can be deployed into production, tested, and released.
The final step is monitoring the application in production to ensure
it is working as expected. In this chapter, we will review each step
in this process, highlighting the inefficiencies that frequently occur.
Then, in Chapter 3, we will review the DevOps practices that were
developed to help address those inefficiencies.

18 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

Requirements
The first step in the DP is progressing from a business idea to work
for the developer to create the new feature. This usually involves
creating a requirement and planning the development to some
extent. The first problem large organizations have with flow of value
through their DP is that they tend to use waterfall planning. They do
this because they use waterfall planning for every other part of their
business so they just apply the same processes to software. Software,
however, is unlike anything else most organizations manage in three
ways. First, it is much harder to plan accurately because everything
you are asking your teams to do represents something they are being
asked to do it for the first time. Second, if software is developed
correctly with a rigorous DP, it is relatively quick and inexpensive
to change. Third, as an industry we are so poor at predicting our
customers’ usage that over 50% of all software developed is never
used or does not meet its business intent. Because of these unique
characteristics of software, if you use waterfall planning, you end up
locking in your most flexible and valuable asset in order to deliver
features that won’t ever be used or won’t deliver the intended busi-
ness results. You also use up a significant amount of your capacity
planning instead of delivering real value to your business.

Organizations that use waterfall planning also tend to build up lots
of requirements inventory in front of the developer. This inventory
tends to slow down the flow of value and creates waste and inef-
ficiencies in the process. As the Lean manufacturing efforts have

CHAPTER 2 THE BASIC DEPLOYMENT PIPELINE 19

clearly demonstrated, wherever you have excess inventory in the
system tends to drive waste in terms of rework and expediting. If the
organization has invested in creating the requirements well ahead of
when they are needed, when the developer is ready to engage, the
requirement frequently needs to be updated to answer any questions
the developer might have and/or updated to respond to changes in
the market. This creates waste and rework in the system.

The other challenge with having excess inventory of requirements
in front of the developer is that as the marketplace evolves, the pri-
orities should also evolve. This leads to the organization having to
reprioritize the requirements on a regular basis or, in the worst case,
sticking to a committed plan and delivering features that are less
likely to meet the needs of the current market. If these organizations
let the planning process lock them into committed plans, it creates
waste by delivering lower value features. If the organizations repri-
oritize a large inventory of requirements, they will likely deprioritize
requirements that the organization has invested a lot of time and
energy in creating. Either way, excess requirements inventory leads
to waste.

Test Environment
The next step is getting an environment where the new feature can
be deployed and tested. The job of providing environments typically
belongs to Operations, so they frequently lead this effort. In small

20 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

organizations using the cloud, this can be very straightforward and
easy. In large organizations using internal datacenters, this can be
a very complex and timely process that requires working through
extensive procurement and approval processes with lengthy handoffs
between different parts of the organization. Getting an environment
can start with long procurement cycles and major operational proj-
ects just to coordinate the work across the different server, storage,
networking, and firewall teams in Operations. This is frequently one
of the biggest pain points that cause organizations to start explor-
ing DevOps.

There is one large organization that started their DevOps initia-
tive by trying to understand how long it would take to get up Hello
World! in an environment using their standard processes. They did
this to understand where the biggest constraints were in their orga-
nization. They quit this experiment after 250 days even though they
still did not have Hello World! up and running because they felt they
had identified the biggest constraints. Next, they ran the same exper-
iment in Amazon Web Services and showed it could be done in two
hours. This experiment provided a good understanding of the issues
in their organization and also provided a view of what was possible.

Testing and Defect Fixing
Once the environment is ready, the next step is deploying the code
with the new feature into the test environment and ensuring it works
as expected and does not break any existing functionality. This step
should also ensure that there were no security or performance issues
created by the new code. Three issues typically plague traditional
organizations at this stage in their DP: repeatability of test results,
the time it takes to run the tests, and the time it takes to fix all the
issues.

Repeatability of the results is a big source of inefficiency for most
organizations. They waste time and energy debugging and trying to
find code issues that end up being problems with the environment,
the code deployment, or even the testing process. This makes it

CHAPTER 2 THE BASIC DEPLOYMENT PIPELINE 21

extremely difficult to determine when the code is ready to flow into
production and requires a lot of extra triaging effort for the orga-
nization. Large, complex, tightly coupled organizations frequently
spend more time setting up and debugging these environments than
they do writing code for the new capabilities.

This testing is typically done with expensive and time-consuming
manual tests that are not very repeatable. This is why it’s essential to
automate your testing. The time it takes to run through a full cycle
of manual testing delays the feedback to developers, which results
in slow rework cycles, which reduces flow in the DP. The time and
expense of these manual test cycles also forces organizations to batch
lots of new features together into major releases, which slows the flow
of value and makes the triage process more difficult and inefficient.

The next challenge in this step is the time and effort it takes to remove
all the defects from the code in the test environment and to get the
applications up to production level quality. In the beginning, the big-
gest constraint is typically the time it takes to run all the tests. When
this takes weeks, the developers can typically keep up with fixing
defects at the rate at which the testers are finding them. This changes
once the organization moves to automation where all the testing can
be run in hours, at which point the bottleneck tends to move toward
the developers ability to fix all the defects and get the code to pro-
duction levels of quality.

22 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

Once an organization gets good at providing environments or is just
adding features to an application that already has environments set
up, reaching production level quality is frequently one of the biggest
challenges to releasing code on a more frequent basis. I have worked
with organizations that have the release team leading large cross-or-
ganizational meetings to get applications tested, fixed, and ready for
production. They meet every day to review the testing progress to
see when it will be done so they are ready to release to production.
They track all the defects and fixes so they can make sure the cur-
rent builds have production level quality. Frequently, you see these
teams working late on a Friday night to get the build ready for off-
shore testing over the weekend only to find out Saturday morning
that all the offshore teams were testing with the wrong code or a bad
deployment, or the environment was misconfigured in some way.
This process can drive a large amount of work into the system and is
so painful that many organizations choose to batch very large, less
frequent releases to limit the pain.

Production Deployment
Once all the code is ready, the next step is to deploy the code into
production for testing and release to the customer. Production
deployment is an Operations led effort, which is important because
Operations doesn’t always take the lead in DevOps transformations,
but when you use the construct of the DP to illustrate how things
work, it becomes clear that Operations is essential to the transfor-
mation and should lead certain steps to increase efficiency in the
process. It is during this step that organizations frequently see issues
with the application for the first time during the release. It is often
not clear if these issues are due to code, deployment, environments,
testing, or something else altogether. Therefore, the deployment of
large complex systems frequently requires large cross-organizational
launch calls to support releases. Additionally, these deployment pro-
cesses themselves can require lots of time and resources for manual
implementations. The amount of time, effort, and angst associated

CHAPTER 2 THE BASIC DEPLOYMENT PIPELINE 23

with this process frequently pushes organizations into batching large
amounts of change into less frequent releases.

Monitoring and Operations
Monitoring is typically another Operations-led effort since they own
the tools that are used to monitor production. Frequently, the first
place in the DP that monitoring is used is in production. This is prob-
lematic because when code is released to customers, developers hav-
en’t been able to see potential problems clearly before the customer
experience highlights it. If Operations works with Development to
move monitoring up the pipeline, potential problems are caught ear-
lier and before they impact the customer.

When code is finally released to the customers and monitored to
ensure it is working as expected, then ideally there shouldn’t be any
new issues caught with monitoring in production if all the perfor-
mance and security testing was complete with good coverage. This
is frequently not the case in reality. For example, I was part of one
large release into production where we had done extensive testing
going through a rigorous release process, only to have it immediately
start crashing in production as a result of an issue we had never seen
before. Every time we pointed customer traffic to the new code base,
it would start running out of memory and crashing. After several
tries and collecting some data, we had to spend several hours roll-
ing back to the old version of the applications. We knew where the
defect existed, but even as we tried debugging the issues, we couldn’t
reproduce it in our test environments. After a while, we decided
we couldn’t learn any more until we deployed into production and
used monitoring to help locate the issue. We deployed again, and
the monitoring showed us that we were running out of memory and
crashing. This time the developers knew enough to collect more
clues to help them identify the issue. It turns out a developer was fix-
ing a bug that was not wrapping around a long line of text correctly.
The command the developer had used worked fine in all our testing,
but in production we realized that IE8 localized to Spanish had a
defect that would turn this command into a floating point instead of

24 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

an integer, causing a stack overflow. This was such a unique corner
case, we would not have considered testing for it. Additionally, even
if we had considered it, running all our testing on different browsers
with different localizations would have become cost prohibitive. It
is issues like this that remind us that the DP is not complete until
the new code has been monitored in production and is behaving as
expected.

Summary
Understanding and improving a complex DP in a large organization
can be a complicated process. Therefore, it makes sense to start by
exploring a very simple DP with one developer and understanding
the associated challenges. This process starts with the business idea
being communicated to the developer and ends with working code
in production that meets the needs of the customer. There are lots of
things that can and do go wrong in large organizations, and the DP
provides a good framework for putting those issues in context. In
this chapter, we introduced the concept and highlighted some typi-
cal problems. Chapter 3 will introduce the DevOps practices that are
designed to address issues at each stage in the pipeline and provide
some metrics that you can use to target improvements that will pro-
vide the biggest benefits.

25

Chapter 3

OPTIMIZING THE BASIC
DEPLOYMENT PIPELINE

Setting up your DP and using DevOps practices for increasing its
throughput while maintaining or improving quality is a journey that
takes time for most large organizations. This approach, though, will
provide a systematic method for addressing inefficiencies in your
software development processes and improving those processes over
time. We will look at the different types of work, different types of
waste, and different metrics for highlighting inefficiencies. We will
start there because it is important to put the different DevOps con-
cepts, metrics, and practices into perspective so you can start your
improvements where they will provide the biggest benefits and start
driving positive momentum for your transformation.

The technical and cultural shifts associated with this will change how
everyone works on a day-to-day basis. The goal is to get people to
accept these cultural changes and embrace different ways of work-
ing. For example: As an Operations person, I have always logged into
a server to debug and fix issues on the fly. Now I can log on to debug,
but the fix is going to require updating and running the script. This
is going to be slower at first and will feel unnatural to me, but the
change means I know, as does everyone else, that the exact state of
the server with all changes are under version control, and I can cre-
ate new servers at will that are exactly the same. Short-term pain for
long-term gain is going to be hard to get some people to embrace,
but this is the type of cultural change that is required to truly trans-
form your development processes.

Additionally, there are lots of breakthroughs coming from the field
of DevOps that will help you address issues that have been plaguing
your organization for years that were not very visible while operating
at a low cadence. When you do one deployment a month, you don’t
see the issues repeating enough to see a common cause that needs to

26 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

be fixed. When you do a deployment each day, you see a pattern that
reveals the things that need fixing. When you are deploying manu-
ally on a monthly basis, you can use brute force, which takes up a
lot of time, requires a lot of energy, and creates a lot of frustration.
When you deploy daily, you can no longer use brute force. You need
to automate to improve frequency, and that automation allows you
to fix repetitive issues.

As you look to address inefficiencies, it is important to understand
that there are three different kinds of work with software that require
different approaches to eliminate waste and improve efficiency. First,
there is new and unique work, such as the new features, new appli-
cations, and new products that are the objective of the organization.
Second, there is triage work that must be done to find the source of
the issues that need to be fixed. Third, there is repetitive work, which
includes creating an environment, building, deploying, configuring
databases, configuring firewalls, and testing.

Since the new and unique work isn’t a repetitive task, it can’t be opti-
mized the way you would a manufacturing process. In manufac-
turing, the product being built is constant so you can make process
changes and measure the output to see if there was an improvement.
With the new and unique part of software you can’t do that because
you are changing both the product and the process at the same
time. Therefore, you don’t know if the improvement was due to the
process change or just a different outcome based on processing a
different type or size of requirement. Instead the focus here should
be on increasing the feedback so that people working on these new
capabilities don’t waste time and energy on things that won’t work
with changes other people are making, won’t work in production,
or don’t meet the needs of the customer. Providing fast, high-qual-
ity feedback helps to minimize this waste. It starts with feedback in
a production-like environment with their latest code working with
everyone else’s latest code to ensure real-time resolution of those
issues. Then, ideally, the feedback comes from the customer with
code in production as soon as possible. Validating with the customer
is done to address the fact that 50% of new software features are

CHAPTER 3 OPTIMIZING THE BASIC DEPLOYMENT PIPELINE 27

never used or do not meet their business intent. Removing this waste
requires getting new features to the customers as fast as possible to
enable finding which parts of the 50% are not meeting their business
objective so the organization can quit wasting time on those efforts.

In large software organizations, triaging and localizing the source of
the issue can consume a large amount of effort. Minimizing waste
in this area requires minimizing the amount of triage required and
then designing processes and approaches that localize the source
of issues as quickly as possible when triage is required. DevOps
approaches work to minimize the amount of triage required by auto-
mating repetitive tasks for consistency. DevOps approaches are also
designed to improve the efficiency of the triage process by moving to
smaller batch sizes, resulting in fewer changes needing to be investi-
gated as potential sources of the issue.

The waste with repetitive work is different. DevOps moves to auto-
mate these repetitive tasks for three reasons. First, it addresses the
obvious waste of doing something manually when it could be auto-
mated. Automation also enables the tasks to be run more frequently,
which helps with batch sizes and thus the triage process. Second,
it dramatically reduces the time associated with these manual tasks
so that the feedback cycles are much shorter, which helps to reduce
the waste for new and unique work. Third, because the automated
tasks are executed the same way every time, it reduces the amount
of triage required to find manual mistakes or inconsistencies across
environments.

DevOps practices are designed to help address these sources of
waste, but with so many different places that need to be improved
in large organizations, it is important to understand where to start.
The first step is documenting the current DP and starting to collect
data to help target the bottlenecks in flow and the biggest sources of
waste. In this chapter we will walk through each step of the basic DP
and will review which metrics to collect to help you understand the
magnitude of issues you have at each stage. Then, we will describe
the DevOps approaches people have found effective for addressing

28 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

the waste at that stage. Finally, we will highlight the cultural changes
that are required to get people to accept working differently.

This approach should help illustrate why so many different people
have different definitions of DevOps. It really depends what part of
the elephant they are seeing. For any given organization, the con-
straint in flow may be the planning/requirements process, the devel-
opment process, obtaining consistent environments, the testing
process, or deploying code. Your view of the constraint also poten-
tially depends on your role in the organization. While everything
you are hearing about DevOps is typically valid, you can’t simply
copy the rituals because it might not make sense for your organi-
zation. One organization’s bottleneck is not another organization’s
bottleneck so you must focus on applying the principles!

Requirement/Planning
Here we are talking about new and unique work, not repetitive work,
so fixing it requires fast feedback and a focus on end-to-end cycle
time for ultimate customer feedback.

For organizations trying to better understand the waste in the plan-
ning and requirements part of their DP, it is important to understand
the data showing the inefficiencies. It may not be possible to col-
lect all the data at first, but don’t let this stop you from starting your
improvements. As with all of the metrics we describe, get as much
data as you can to target issues and start your continuous improve-
ment process. It is more important to start improving than it is to
get a perfect view of your current issues. Ideally, though, you would
want to know the answers to the following questions:

• What percentage of the organizations capacity is spent on docu-
menting requirements and planning?

• What is the amount of requirements inventory waiting for
development, roughly, in terms of days of supply?

CHAPTER 3 OPTIMIZING THE BASIC DEPLOYMENT PIPELINE 29

• What percentages of the requirements are reworked after origi-
nally defined?

• What percentages of the delivered features are being used by the
customers and are achieving the expected business results?

Optimizing this part of the DP requires moving to a just-in-time
approach to documenting and decomposing requirements only to
the level required to support the required business decisions while
limiting the commitment of long-term deliveries to a subset of the
overall capacity. The focus here is to limit the inventory of require-
ments as much as possible. Ideally this would wait until the devel-
oper is ready to start working on the requirement before investing in
defining the feature. This approach minimizes waste because effort
is not exerted until you know for sure it is going to be developed. It
also enables quick responsiveness to changes in the market because
great new ideas don’t have to wait in line behind all the features that
were previously defined.

While this is the ideal situation, it is not always possible because
organizations frequently need a longer-range view of when things
might happen in order to support different business decisions. For
example, you might ask yourself, ”Do I need to ramp up hiring to
meet schedule, or should I build the manufacturing line because a
product is going to be ready for a launch?” The problem is that most
organizations create way more requirements inventory a long way
into the future than is needed to support their business decisions.
They want to know exactly what features will be ready when using
waterfall planning because that is what they do for every other part
of the business. The problem is that this approach drives a lot of
waste into the system and locks in to a committed plan what should
be your most flexible asset. Additionally, most organizations push
their software teams to commit to 100% of their capacity, meaning
they are not able to respond to changes in the marketplace or discov-
eries during development. This is a significant source of waste in a
lot of organizations.

30 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

I have worked with one organization that moved to a more just-
in-time approach for requirements and that has transformed their
planning processes from taking 20% or more of their capacity to less
than 5%. They eliminated waste and freed up 15% of the capacity of
their organization to focus on creating value for the business. This
was done by limiting long-term commitments of over a year to less
than 50% of capacity and committing additional capacity in shorter
timeframe horizons. The details of how this worked are in Chapter 5
of Leading the Transformation by Gary Gruver and Tommy Mouser.
This was a big shift that freed up more capacity, and it also improved
the speed of value through the system because new ideas could move
quickly into development if they were of the highest priority instead
of waiting in queue behind a lot of lower-priority ideas that were
previously planned.

This move is a big cultural change for most organizations. It requires
software/IT and business executives to think differently about how
they manage software. They really need to change their focus from
optimizing the system for accuracy in plans to optimizing it for
throughput of value for the customer. They need to be clear about
the business decisions they need to support and work with the orga-
nization to limit the investment in requirements just to the level of
detail required to support those decisions.

Environments
For many organizations, like the one described in Chapter 2, the
time it takes for Operations to create an environment for testing is
one of the lengthiest steps in the DP. Additionally, the consistency
between this testing environment and production is so lacking
that it requires finding and fixing a whole new set of issues at each
stage of testing in the DP. Creating these environments is one of the
main repetitive tasks that can be documented, automated, and put
under revision control. The objective here is to be able to quickly
create environments that provide consistent results across the DP.
This is done through a movement to infrastructure as code, which
has the additional advantage of documenting everything about the

CHAPTER 3 OPTIMIZING THE BASIC DEPLOYMENT PIPELINE 31

environments so it is easier for different parts of the organization to
track and collaborate on changes.

To better understand the impact environment issues are having on
your DP, it would be helpful to have the following data:

• time from environment request to delivery

• how frequently new environments are required

• the percent of time environments need fixing before acceptance

• the percent of defects associated with code vs. environment vs.
deployment vs. database vs. other at each stage in the DP

One of the biggest improvements coming out of the DevOps move-
ment concerns the speed and consistency of environments, deploy-
ments, and databases. This started with Continuous Delivery by Jez
Humble and David Farley. They showed the value of infrastructure
as code, where all parts of the environment are treated with the same
rigor and controls as the application code. The process of automating
the infrastructure and putting it under version control has some key
advantages. First, the automation ensures consistency across differ-
ent stages and different servers in the DP. Second, the automation
supports the increased frequency that is required to drive to smaller
batch sizes and more frequent deployments. Third, it provides work-
ing code that is a well-documented definition of the environments
that everyone can collaborate on when changes are required to sup-
port new features.

Technical solutions in this space are quickly evolving because orga-
nizations are seeing that getting control of their environments
provides many benefits. Smart engineers around the world are con-
stantly inventing new ways to make this process easier and faster.
Cloud capabilities, whether internal or external, tend to help a lot
with speed and consistency. New scripting capabilities from Chef,
Puppet, Ansible, and others help with getting all the changes in
scripts under source control management. There have also been

32 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

breakthroughs with containers that are helping with speed and con-
sistency. The “how” in this space is evolving quickly because of the
benefits the solutions are providing, but the “what” is a lot more con-
sistent. For environments, you don’t want the speed of provisioning
to be a bottleneck in your DP. You need to be able to ensure consis-
tency of the environment, deployment process, and data across dif-
ferent stages of your DP. You need to be able to qualify infrastructure
code changes efficiently so your infrastructure can move as quickly
as your applications. Additionally, you need to be able to quickly and
efficiently track everything that changes from one build and envi-
ronment to the next.

Having Development and Operations collaborate on these scripts for
the entire DP is essential. The environments across different stages
of the DP are frequently different sizes and shapes, so often no one
person understands how a configuration change in the development
stage should be implemented in every stage through production. If
you are going to change the infrastructure code, it has to work for
every stage. If you don’t know how it should work in those stages,
it forces necessary discussions. If you are changing it and break-
ing other stages without telling anyone, the SCM will find you out
and the people managing the DP will provide appropriate feedback.
Working together on this code is what forces the alignment between
Development and Operations. Before this change, Development
would tend to make a change to fix their environment so their code
would work, but they wouldn’t bother to tell anyone or let people
know that in order for their new feature to work, something would
have to change in production. It was release engineering’s job to
try and figure out everything that had changed and how to get it
working in production. With the shift to infrastructure as code, it is
everyone’s responsibility to work together and clearly document in
working automation code all of the changes.

This shift to infrastructure as code also has a big impact on the
ITIL and auditing processes. Instead of the ITIL processes of doc-
umenting configuration of a change manually in a ticket, it is all
documented in code that is under revision control in a SCM tool.

CHAPTER 3 OPTIMIZING THE BASIC DEPLOYMENT PIPELINE 33

The SCM is designed to make it easy to track any and all changes
automatically. You can look at any server and see exactly what was
changed by who and when. Combine this with automated testing
that can tell you when the system started failing, and you can quickly
get to the change that caused the problem. This localization gets eas-
ier when the cycle time between tests limits this to a few changes to
look through.

Right now, the triage process takes a long time to sort through
clues to find the change that caused the problem. It is hard to tell
if it is a code, environment, deploy, data, or test problem. and cur-
rently the only thing under control for most organizations is code.
Infrastructure as code changes that and puts everything under ver-
sion control that is tracked. This eliminates server-to-server variabil-
ity and enables version control of everything else. This means that
the process for making the change and documenting the change are
the same thing so you don’t have to look at the documentation of the
change in one tool to see what was approved and then validate that
it was really done in the other tool. You also don’t have to look at
everything that was done in one tool and then go to the other tool to
ensure it was documented. This is what they do during auditing. The
other thing done during auditing is tracking to ensure everyone is
following the manual processes every time–something that humans
do very poorly, but computers do very well. When all this is auto-
mated, it meets the ITIL test of tracking all changes, and it makes
auditing very easy. The problem is that the way DevOps is currently
described to process and auditing teams makes them dig in their
heels and block changes when instead they should be championing
those changes. To avoid this resistance to these cultural changes, it is
important to help the auditing team understand the benefits it will
provide and include them in defining how the process will work.
This will make it easier for them to audit, and they will know where
to look for the data they require.

Using infrastructure as code across the DP also has the benefit of
forcing cultural alignment between Development and Operations.
When Development and Operations are using different tools and

34 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

processes for creating environments, deploying code into those envi-
ronments, and managing databases, they tend to find lots of issues
releasing new code into production. This can lead to a great deal of
animosity between Development and Operations. As they start using
the same tools, and more specifically the same code, you will likely
find that making the code work in all the different stages of the DP
forces them to collaborate much more closely. They need to under-
stand each other’s needs and the differences between the different
stages much better. They also need to agree that any changes to the
production environments start at the beginning of the DP and prop-
agate through the system just like the application code. Over time,
you will likely find that this working code is the forcing function that
starts the cultural alignment between Development, Operations,
and all the organizations in between. This is a big change for most
large organizations. It requires that people quit logging in to servers
and making manual changes. It requires an investment in creating
automation for the infrastructure. It also requires everyone to use
common tools, communicate about any infrastructure changes that
are required, and document the changes with automated scripts. It
requires much better communication across the different silos than
exists in most organizations.

Organizations doing embedded development typically have a unique
challenge with environments because the firmware/software systems
are being developed in parallel with the actual product so there is
very little, if any, product available for early testing. Additionally,
even when the product is available, it is frequently difficult to fully
automate the testing in the final product. These organizations need
to invest in simulators to enable them to test the software portions
of their code as frequently and cheaply as possible. They need to find
or create a clean architectural interface between the software parts of
their code and the low-level embedded firmware parts. Code is then
written that can simulate this interface running on a blade server so
they can test the software code without the final product. The same
principle holds true for the low-level embedded firmware, but this
testing frequently requires validating the interactions of this code

CHAPTER 3 OPTIMIZING THE BASIC DEPLOYMENT PIPELINE 35

with the custom hardware in the product. For this testing, they need
to create emulators that support testing of the hardware and firm-
ware together without the rest of the product.

This investment in simulators and emulators is a big cultural shift for
most embedded organizations. They typically have never invested to
create these capabilities and instead just do big bang integrations late
in the product lifecycle that don’t go well. Additionally, those that
have created simulators or emulators have not invested in continu-
ally improving these capabilities to ensure they can catch more and
more of the defects over time. These organizations need to make the
cultural shift to more frequent test cycles just like any other DevOps
organization, but they can’t do that if they don’t have test environ-
ments they can trust for finding code issues. If the organization is
not committed to maintaining and improving these environments,
the organization tends to loose trust and quit using them. When this
happens, they end up missing a key tool for transforming how they
do embedded software and firmware development.

Testing
The testing, debug, and defect fixing stage of the DP is a big source of
inefficiencies for lots of organizations. To understand the magnitude
of the problem for your DP, it would be helpful to have the following
data:

• the time it takes to run the full set of testing

• the repeatability of the testing (false failures)

• the percent of defects found with unit tests, automated system
tests, and manual tests

• the time it takes the release branch to meet production quality

• approval times

• batch sizes or release frequency at each stage

36 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

The time it takes for testing is frequently one of the biggest bot-
tlenecks in flow in organizations starting on the DevOps journey.
They depend on slow-running manual tests to find defects and sup-
port their release decisions. Removing or reducing this bottleneck
is going to require moving to automated testing. This automated
testing should include all aspects of testing required to release code
into production: regression, new functionality, security, and per-
formance. Operations should also work to add monitoring or other
operational concerns to these testing environments to ensure issues
are found and feedback is given to developers while they are writ-
ing code so they can learn and improve. Automating all the testing
to run within hours instead of days and weeks is going to be a big
change for most organizations. The tests need to be reliable and pro-
vide consistent results if they are going to be used for gating code.
You should run them over and over again in random order against
the same code to make sure they provide the same result each time
and can be run in parallel on separate servers. Make sure the test
automation framework is designed so the tests are maintainable and
triageable. You are going to be running and maintaining thousands
of automated tests running daily, and if you don’t think through how
this is going to work at scale, you will end up dying under the weight
of the test automation instead of reaping its benefits. This requires a
well-designed automation framework that is going to require close
collaboration between Development and QA.

It is important to make sure the tests are designed to make the tri-
age process more efficient. It isn’t efficient from a triage perspective
if the system tests are finding lots of environment or deployment
issues. If this happens, you should start designing specific post-de-
ployment tests to find and localize these issues quickly. Then once
the post-deployment tests are in place, make sure they are passing
and the environments are correct before starting any system testing.
This approach improves the triage efficiency by separating code and
infrastructure issues with the design of the testing process.

Automated testing and responding to feedback is going to be a big
cultural shift for most organizations. The testing process is going to

CHAPTER 3 OPTIMIZING THE BASIC DEPLOYMENT PIPELINE 37

have to move from manually knowing how to test the applications
to using leading edge programming skills to automate testing of the
application. These are skills that don’t always exist in organizations
that have traditionally done manual testing. Therefore, Development
and the test organization are going to have to collaborate to design
the test framework. Development is going to have to modify how
they write code so that automated testing will be stable and main-
tainable. And probably the biggest change is to have the developers
respond to test failures and keep build stability as their top priority.

If you can’t get this shift to happen, it probably doesn’t make sense
to invest in building out complex DPs that won’t be used. The pur-
pose of the automated testing is not to reduce the cost of testing,
but to enable the tests to be run on a more frequent basis to provide
feedback to developers in order to reduce waste in new and unique
work. If they are not responding to this feedback, then it is not help-
ing. Therefore, it is important to start this cultural shift as soon as
possible. Don’t write a bunch of automated tests before you start
using them to gate code. Instead, write a few automated build accep-
tance tests (BATs) that define a very minimal level of stability. Make
sure everyone understands that keeping those tests passing on every
build is job one. Watch this process very carefully. If it is primarily
finding test issues, review and redesign your test framework. If it is
primarily finding infrastructure issues, start designing post-deploy-
ment tests to ensure stability before running any system test looking
for code issues. If it is primarily finding code issues, then you are
on the right track and ready to start the cultural transformation of
having the developers respond to feedback from the DP. The process
of moving to automated tests gating code is going to be a big cultural
shift, but it is probably one of the most important steps in changing
how software is developed.

Testing more frequently on smaller batches of changes makes tri-
age and debugging much easier and more efficient. The developers
receive feedback while they are writing the code and engaged in
that part of the design instead of weeks later when they have moved
on to something else. This makes it much easier for them to learn

38 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

from their mistakes and improve instead of just getting beat up for
something they don’t even remember doing. Additionally, there
are fewer changes in the code base between the failure and the last
time it passed, so you can quickly localize the potential sources of
the problem.

The focus for automated testing really needs to be on increasing
the frequency of testing and ensuring the organization is quickly
responding to failures. This should be the first step for two reasons.
First, it starts getting developers to ensure the code they are writing
is not breaking existing functionality. Second, and most importantly,
it ensures that your test framework is maintainable and triagable
before you waste time writing tests that won’t work over the long
term.

I worked with one organization that was very proud of the fact that
they had written over one thousand automated tests that they were
running at the end of each release cycle. I pointed out that this was
good, but to see the most value, they should start using them in the
DP every day, gating builds where the developers were required to
keep the builds green. They should also make sure they started with
the best, most stable tests because if the red builds were frequently
due to test issues instead of code issues, then the developers would
get upset and disengage from the process. They spent several weeks
trying to find reliable tests out of the huge amount available. In
the end, they found out that they had to throw out all the existing
tests because they were not stable, maintainable, or triagable. Don’t
make this same mistake! Start using your test automation as soon as
possible. Have the first few tests gating code on your DP, and once
you know you have a stable test framework, start adding more tests
over time.

Once you have good test automation in place that is running in
hours instead of days or weeks, the next step to enabling more fre-
quent releases is getting and keeping trunk much closer to produc-
tion-level quality. If you let lots of defects build up on trunk while you
are waiting for the next batch release, then the bottleneck in your DP

CHAPTER 3 OPTIMIZING THE BASIC DEPLOYMENT PIPELINE 39

will be the amount of time and energy it takes to fix all the defects
before releasing into production. The reality is that to do continuous
deployment, trunk has to be kept at production levels of quality all
the time. This is a long way off for most organizations, but the ben-
efit of keeping trunk closer to production-level quality is worth the
effort. It enables more frequent, smaller releases because there is not
as big an effort to stabilize a release branch before going into produc-
tion. It also helps with the localization of issues because it is easier to
identify changes in quality when new code is integrated. Lastly, while
you may still have some manual testing in place, it ensures that your
testers are as productive as possible while working on a stable build.
This might not be your bottleneck if you start with a lot of manual
testing because the developers can fix defects as quickly as the testers
can find them. However, this starts to change as you add more auto-
mated tests. Watch for this shift, and be ready to move your focus as
the bottleneck changes over time.

This transition to a more stable trunk is a journey that is going to
take some time. Start with a small set of tests that will define the
minimal level of stability that you will ever allow in your organiza-
tion. These are your BATs. If these fail due to a change, then job one
is fixing those test failures as quickly as possible. Even better, you
should automatically block that change from reaching trunk. Then
over time, you should work to improve the minimal level of stability
allowed on trunk by farming your BAT tests. Have your QA organi-
zation help identify issues they frequently find in builds that impact
their ability to manually test effectively. Create an automated test to
catch this in real time. Add it to the BAT set, and never do any man-
ual testing on a build until the all the automated tests are passing.
Look for major defects that are getting past the current BAT tests,
and add a test to fill the hole. Look for long running BAT tests that
are not finding defects, and remove them so you have time to add
more valuable tests. This is a constant process of farming the BAT
test that moves trunk closer to release quality over time.

If you are going to release more frequently with smaller batches, this
shift to keeping trunk stable and closer to release quality is required.

40 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

It is also going to be a big shift for most organizations. Developers
will need to bring code in without breaking existing functionality
or exposing their code to customers until it is done and ready for
release. Typically, organizations release by creating a release branch
where they finalize and stabilize the code. Every project that is going
to be in a release needs to have their code on trunk when the release
branches. This code is typically brought in with the new features
exposed to the customer ready for final integration testing. For lots
of organizations, the day they release branch is the most unstable
day for trunk because developers are bringing in last minute features
that are not ready and have not been tested with the rest of the latest
code. This is especially true for projects the business wants really
badly. These projects tend to come in with the worst quality, which
means every other project on the release has to wait until the really
bad project is ready before the release branch can go to production.
This type of behavior tends to lead to longer release branches and
less frequent releases. To address this, the organization needs to
start changing their definition of done. The code can and should be
brought in but not exposed to the customer until it meets the new
definition of done. If the organization is going to move to releas-
ing more frequently, the new definition of done needs to change to
include the following: all the stories are signed off, the automated
testing is in place and passing, and there are no known open defects.
This will be a big cultural shift that will take some time.

The final step in this stage of the DP is the approval for moving into
production. For some organizations that are tightly regulated, this
requires getting manual approval by someone in the management
chain, which can take up to days to get. For organizations that are
well down the path to continuous deployment, this can be the big-
gest bottleneck in the flow of code. To remove this bottleneck, highly
regulated organizations move to have the manager who was doing
the manual approval work with testers document their approval
criteria with automated tests. For less regulated environments, hav-
ing the developer take ownership and responsibility for quickly

CHAPTER 3 OPTIMIZING THE BASIC DEPLOYMENT PIPELINE 41

resolving any issues found in productions can eliminate the man-
agement approval process.

There are lots of changes that can help improve the flow at this stage
of the DP. The key is to make sure you are prioritizing improvements
that will do the most to improve the flow. So, start with the bottle-
neck and fix it, then identify and fix the next bottleneck. This is the
key to improving flow. If your test cycle is taking six weeks to run and
your management approval takes a day, it does not make any sense
to take on the political battle of convincing your organization that
DevOps means it needs to let developers push code into production.
If, on the other hand, testing takes hours, your trunk is always at pro-
duction levels of quality, and your management approval takes days,
then it makes sense to address the approval barriers that are slowing
down the flow of code. It is important to understand the capabilities
of your organization and the current bottlenecks before prioritizing
the improvements.

Production Release
The next step in the basic DP is the release into production. Ideally,
you would have found and fixed all the issues in the test stage so
that this is a fairly automated and simple process. Realistically, this is
not the case for most organizations. To better understand the source
and magnitude of the issues at this stage, it is helpful to look at the
following metrics:

• the time and effort required to deploy and release into
production

• the number of issues found during release and their source
(code, environment, deployment, test, data, etc…)

If you are going to release code into production with smaller more
frequent releases, you can’t have a long drawn out release process
requiring lots of resources. Many organizations start with teams of
Operations people deploying into a datacenter with run books and
manual processes. This takes a lot effort and is often plagued with

42 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

manual errors and inconsistencies. DevOps addresses this by auto-
mating the release process as the final step in the DP. The process
has been exercised and perfected during earlier stages in the DP
and production is just the last repeat of the process. This automa-
tion ensures consistency and greatly reduces the amount of time and
people required for release.

The next big challenge a lot of organizations have during the release
process is that they are finding issues during the release process that
they did not discover earlier in the DP. It is important to understand
the source of these issues so the team can start addressing the rea-
sons they were not caught before release into production. As much as
possible, you should be using the same tools, processes, and scripts
in the test environment as in the production environment. The test
environment is frequently a smaller version of production, so it is
not exact, but as much as possible you should work to abstract those
differences out of the common code that that defines the environ-
ment, deploys the code, and configures the database. If you are find-
ing a lot of issues associated with these pieces, start automating these
processes and architect for as much common code across the DP as
possible. Also, once you have this automation in place, any patches
for production should start at the front end of the pipeline and flow
through the process just like the application code.

Organizations with large complex deployments also frequently strug-
gle with the triage process during the launch call. A test will fail, but
it is hard to tell if it is due to an environment, deployment, database,
code, or test issue. The automated testing in the deployment process
should be designed to help in this triage process. Instead of config-
uring the environments, deploying the code, configuring the data-
base, and running and debugging system tests, you need to create
post-deployment automated tests that can be run after the environ-
ments are configured to make sure they are correct server by server.
Do the same thing for the deployment and database. Then after you
have proven that those steps executed correctly, you can run the sys-
tem tests to find any code issues that were not caught earlier in the
DP. This structured DevOps approach really helps to streamline the

CHAPTER 3 OPTIMIZING THE BASIC DEPLOYMENT PIPELINE 43

triage process during code deployment and helps localize hard to
find intermittent issues that only happen when a system test happens
to hit the one server where the issue exists.

Making these deployments into production work smoothly requires
these technical changes, but mostly it requires everyone in the DP
working together to optimize the system. This is why the DP is an
essential part of DevOps transformations. If Operations continually
sees issues during deployment, they need to work to design feed-
back mechanisms upstream in the DP so the issues are found and
fixed during the testing process. If there are infrastructure issues
found during deployment, Operation teams need to work with the
Development teams to understand why the infrastructure as code
approaches did not find and resolve these issues earlier in the DP.
Additionally, the Operations team should be working with the test
organization to ensure post-deployment tests are created to improve
the efficiency and effectiveness of the triage process. These are all
very different ways of working that these teams need to embrace
over time if the DevOps transformation is going to be successful.

Operation and Monitoring
The final step is operating and monitoring the code to make sure it is
working as expected in production. The primary metrics to monitor
here are:

• issues found in production

• time to restore service

Some organizations are so busy fighting issues in production that
they are not able to focus on creating new capabilities. Addressing
production quality issues can be the biggest challenge for these orga-
nizations. In these situations, it is important to shift the discovery of
these issues to earlier in the pipeline. The operational organization
needs to work with the development organization to ensure their
concerns and issues are being tested for and addressed earlier in the
pipeline. This includes adding tests to address their concerns and

44 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

adding monitoring that is catching issues in production to the test
environments. As discussed in the release section, it also requires
getting common tools and scripts for environments, deployments,
and databases across the entire DP.

Implementing all these changes can help ensure you are catching
most issues before launching into production. It does not neces-
sarily help with the IE8 issue with Spanish localization discussed
in Chapter 2. In that case, it would have just been too costly and
time consuming to test every browser in ever localization for every
test case. Instead, the other significant change that website or SaaS
type organizations that have complete control over their deployment
processes tend to implement is to separate deployment from release
by using approaches like feature toggles and canary releases. This
enables new versions of the system to be released into production
without new features being accessible to the customer, a pattern
known as “dark launching.” This is done due to the realization that
no matter how much you invest in testing, you still might not find
everything. Additionally, the push to find everything can drive the
testing cost and cycle times out of control. Instead these organiza-
tions use a combination of automated testing in their DP and canary
releases in production. Once the feature makes it through their DP,
instead of releasing it to everyone at once, they do a canary release by
giving access to a small percentage of customers and monitoring the
performance to see if it is behaving as expected before releasing it to
the entire customer base. This is not a license to avoid testing earlier
in the pipeline, but it does enable organizations to limit the impact
on the business from unforeseen issues while also taking a pragmatic
approach to their automated testing.

Summary
This simple construct of a DP with a single developer does a good
job of introducing the concepts and shows how the DevOps changes
can help to improve flow. The metrics are also very useful for tar-
geting where to start improving the pipeline. It is important to look
across all the metrics in the DP to ensure you start this work with the

CHAPTER 3 OPTIMIZING THE BASIC DEPLOYMENT PIPELINE 45

bottleneck and/or the biggest source of waste because transforming
your development and deployment processes is going to take some
time, and you want to start seeing the benefits of these changes as
soon as possible. This can only occur if you start by focusing on the
biggest issues for your organization. The metrics are intended to
help identify these bottlenecks and waste in order to gain a common
understanding of the issues across your organization so you can get
everyone aligned on investing in the improvements that will add the
most value out of the gate.

46

Chapter 4

SCALING TO A TEAM WITH
CONTINUOUS INTEGRATION

Continuous integration is the first step in the DP if you have more
than one developer. This is the first thing that changes with the DP
when you start scaling beyond one developer to a team of develop-
ers, and it drives lots of changes in behavior. All the different devel-
opers bring their code together and make sure it is working. You
need to make green builds job one and develop in a way that allows
you to bring code in without breaking trunk. This is a big change for
developers used to traditional methods, but it provides huge advan-
tages. Until you have done it, you can’t imagine that it will ever work,
but once you have done it this way, you can’t imagine working any
other way. The challenge is ensuring that the cultural changes occur
and that the teams are embracing this new way of working.

The first step in scaling the DP is broadening the flow of work from
one developer to a team working on an application. The big change
here is associated with distributing the development across mem-
bers in the team and then integrating all their changes to ensure it all
works together, meets the business expectations, and does not break
existing functionality. This requires improving the communication
with the business and across team members, which is usually accom-
plished with Scrum practices. It also requires implementing contin-
uous integration, where developers are frequently checking code
into trunk and responding to test failures, as the first step towards
delivering code in the DP.

CHAPTER 4 SCALING TO A TEAM WITH CONTINUOUS INTEGRATION 47

To understand the impact of this additional complexity on top of the
basic DP it is helpful to understand the following additional metrics:

• number of green builds a day and the percent green in continu-
ous integration

• time to recover from a red build

• percent of features requiring rework before acceptance by the
business

• amount of effort required to integrate code from different devel-
opers to complete a working feature

These last two metrics are a big source of waste that the Agile-Scrum
process is designed to address. Scrum makes all the different devel-
opers on a team have a quick meeting every morning with the busi-
ness lead. This helps to ensure that the developers create what the
business wants and ensures that the developers are talking about how
all their code is going to work together. If these two metrics are your
biggest issues, then by all means start with Scrum. If not, maybe start
somewhere else. As we talked about in Leading the Transformation,
how the teams work is the second order effect. How the teams come
together to deliver value is the first order effect. Continuous integra-
tion or stage 1 of the DP is the forcing function that aligns the team.

48 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

Further integration in all the stages that follow are the forcing func-
tion that aligns across teams. This merge and integration of the code
early and often is what helps to minimize rework waste.

If when scaling the DP to a team the last two metrics stand out as your
biggest sources of waste, then bringing in an Agile coach to work with
the team should be one of your highest priorities. The Scrum process
and daily standups are designed to improve alignment across team
members and with the business. There is a lot of great material from
the Agile community to help with these improvements, so it won’t
be repeated here. The point, however, is to put those changes and
improvements in perspective as part of the broader DP so organiza-
tions understand the waste being targeted with those improvements
and the magnitude of those issues within the broader perspective of
the flow of value through the organization.

If instead the first metric or others from Chapter 3 stand out as the
biggest issues when scaling the pipeline across a team, it probably
make sense to focus on those. From a development perspective,
having continuous integration in the DP drives significant changes
in how developers need to work on a day-to-day basis. Continuous
integration is used to quickly find and resolve issues where different
developers on the team are making changes that won’t work together
or won’t work in production. It requires that the developers make
keeping the build green their top priority and that the operation
people ensure the issues they are concerned about are represented
with automated tests in the continuous integration environment. It
also requires developers checking in their code to trunk on a regular
basis instead of allowing it to stay out on branches and in dedicated
environments. This is a big cultural change for most organizations
and a completely different way of working, but it is probably the most
foundational piece of DevOps and the DP. If you can’t get the organi-
zation to make the shift to integrating code on trunk and keeping it
stable, you are going to be limited in your ability to improve the flow
and release more frequently.

CHAPTER 4 SCALING TO A TEAM WITH CONTINUOUS INTEGRATION 49

Continuous integration also requires a significantly different
approach to development to enable bringing in new code without
breaking the existing functionality. In the past, the team members
would work together on a dedicated branch, coordinating changes
across the application, services layer, and database, then, when
everything was together and working, it would be merged to trunk.

This front end branching enabled the teams to develop and make sure
everything could work together without breaking trunk. The prob-
lem was that once all the changes were ready, you had to merge this
big batch of changes with all the other changes that had occurred on
trunk since the branch was created. This merge process can tend to
be difficult and delay the discovery of code on the different branches
that would not work together. It also drives inefficiencies in the
development process because it allows developers to keep working
on code separately that won’t work together and requires duplication
of effort on both branches.

Therefore, there is a strong drive to move away from branching in
your DP. This requires new approaches for the Development team.
Instead of coordinating changes across the application and services
layer, the team needs to move to approaches like versioning the ser-
vices so the application and services layer can independently bring
changes to trunk without breaking the build. Instead of modifying
a service to support the new feature, add version two of the service
that supports the new feature on trunk. Then the application can
bring in the new code when it is ready and call the version of the
code it needs for the feature. The test framework should be able to
test both the new feature and the old feature on trunk at the same
time while the old feature is toggled on in the trunk environment.
Then, after the testing on the new feature is passing and using the
new version of the service, trunk can toggle from the old feature to
the new feature, and the old version of the service can be deprecated.
A similar approach needs to be taken for database changes using
the techniques described by Scott Ambler and Pramod Sadalage in
their book Refactoring Databases. There are lots of reasons devel-
opment teams will give for why they must branch, but you should

50 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

understand that all these issues have been solved by other organiza-
tions to enable them to optimize flow in their DP. Getting developers
to make these changes is going to require technical solutions, but
mostly it is about leading the cultural changes of getting them to
work differently on a day-to-day basis.

Summary
Continuous integration is the first step in scaling the DP beyond one
developer. It is also one of the most important first steps in finding
waste and inefficiencies in your software development and delivery
processes. It forces the organization to debug and deal with instabil-
ities in the system by requiring them to keep the builds green. It is
this process that starts providing insights into the biggest issues for
the organization. Are the builds failing due to code, environments,
deployments, test problems, or data? The answers to these questions
are critical to understanding what changes will help address the big-
gest sources of waste that exist in your organization. However, this
requires a big cultural shift to ensuring everyone is focused on keep-
ing the build green as their top priority. It also requires developers
to embrace different approaches to coding so they can continually
bring changes to trunk without breaking existing functionality.

51

Chapter 5

SCALING BEYOND A TEAM
Most large organizations start DevOps with a small prototype. They
work to improve part of a DP or a full DP for a smaller application.
They see all the advantages it provides for that team and decide that
they would see much bigger benefits if they scaled it across the entire
organization. They approach it focused on trying to figure out how
to get everyone to do DevOps exactly the same way they did it in the
small prototype, and they try to create a company-wide centralized
plan for the change. This approach, however, overlooks organiza-
tional change management, which is the biggest challenge. When
driving change, it is harder to get people to comply with your wishes
than it is to help them create and own their plans, which is the key
factor in ultimately making those plans successful. Additionally, the
challenges that they are facing with their DP are frequently very dif-
ferent from the challenges found in the prototype and, thus, require
different solutions.

It is much easier to get people to own leading the cultural changes
when the plans are their own and they have the flexibility to priori-
tize the improvements that will help their business the most. Instead
of getting lost in the rituals, which happened in a lot of Agile trans-
formations, the focus needs to be on helping them learn how to
apply the principles. Forcing them to change and do things simply
because they are being told to, doesn’t work. At HP, we were very
focused on the principles and gave the teams as much flexibility as
possible in terms of how they worked. They had the ownership and
made their approaches successful. I am seeing too many DevOps
implementations overlook this point and focus on creating a com-
mon plan for everyone; a bottom up approach has some success,
so they want to scale by telling everyone to do it that way (rituals
instead of principles). But teaching them the principles and helping

52 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

them create a plan that will make their own work successful, is the
way to go. Providing a framework that traditional organizations can
use to create their plan and align the organization under the plan is
essential. That, and allowing people to say “no” to changes they are
hearing about that were designed for coordinating work of tens of
people that won’t work well for coordinating the work of hundreds.
Right now, everyone is hearing about different DevOps ideas. They
are all good, but nobody is putting them in context. Most impor-
tantly, there needs to be differentiation between what applies to tens
of people versus what applies to thousands.

The first step for large organizations is segmenting the problem into
smaller, more manageable pieces with local ownership focusing on
areas where the changes can add the most value. Changing how a
large organization works is hard enough without making it bigger
and more complex than is required. The more developers and oper-
ational people that have to work together, the more complicated it
gets. Therefore, you should break out different parts that don’t have to
be developed, tested, and deployed as a unit because the architecture
is tightly coupled. For example, in retail where companies are trying
to create common experiences at every customer interface, creating
the capability to buy online and pick up in store requires coordi-
nating the work across large, tightly coupled systems. It impacts the
website and mobile teams for ordering. It goes through credit and
inventory systems that are typically on legacy systems. Then it goes
through the point of sales systems and tools for the stores. These
systems are so tightly coupled that moving to buy online and pick up
in store requires coordinating the development, testing, and deploy-
ment across all those systems. In this case, that is one DP. The HR
system is not coupled, so it should be treated as a separate DP. The
purchasing and ordering systems are not coupled, so they could also
be a different DP.

This segmentation approach is a bit different from the bi-modal
DevOps approach that is currently being discussed in the industry
where the recommendation is just to use DevOps for the front-end
systems of engagement and use more traditional approaches for the

CHAPTER 5 SCALING BEYOND A TEAM 53

systems of record. The idea behind bi-modal is that you should apply
DevOps on more modern applications that have the DevOps type of
tooling in place and leave the old, complex, legacy applications alone.
The theory is that this approach also enables fast changes at the cus-
tomer interface where they are most important for delivering value.
This is a nice simplifying approach if it works, but my experience is
that changing the customer experiences frequently requires chang-
ing both systems of engagement and systems of record. Therefore,
you need to improve the flow of change through all the systems that
need to work together, which is why I recommend defining and opti-
mizing based on the entire DP.

Segmenting the problem into as many independent DPs as possible
is the first step, and allows you to define and optimize the DP for
each one separately. The next step is to determine which DPs are
worth the investment to optimize. If the DP for certain applications,
such as the HR system, are not core to how you compete and are not
being updated much, it is probably not worth the investment.

If the applications are worth the investment, it becomes essential to
make the DP as small as possible for a few reasons. Coordinating
less people is easier than coordinating more, especially in software.
Different DPs will have different sources of waste and cycle time. This
process will take some time, so you will want to start where you see
the biggest benefits for your effort to get positive momentum. Most

54 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

importantly, since this is all about getting people to change how they
are working on a daily basis, you will want people to take ownership
for making their ideas successful. If the leaders of that DP have the
latitude to prioritizing the things that will benefit their DP the most,
then they will make their ideas successful, and they are likely to fix
their biggest issues. If this DP can be simplified down to small teams
of 5 to 20 people, you can implement the DevOps practices in one
way because people can wrap their mind around the complete sys-
tem and take ownership.

If the smallest the DP can get is thousands of people, then you have
to take different approaches. DevOps thinking spends so much time
hearing about the improvements from small teams that the differ-
ences between approaches aren’t well appreciated. DevOps thinking
tends to look at this from the perspectives of small teams and from
the bottom up. As an executive trying to change large, tightly coupled
systems, I have a different view of the world. Ideally everyone should
architect for small independent teams because they will always be
more efficient, but the reality is that it is hard and takes time, so
you probably need to improve the process while you are waiting for
re-architecture efforts by optimizing the current DPs.

DevOps forces the coordination across lots of different people and
departments, including: multiple Development teams, Development,
QA, Security, and Operations. DevOps improvements can help
small teams significantly, but the opportunities for improvement are
much larger for larger teams just because there are so many more
opportunities for misunderstandings between people. Coordinating
the work across large organizations is more difficult, and if you
simply try to use the same improvement processes that worked for
small teams, you won’t get the same successful results. Since many
DevOps thinkers have not led a transformation at scale, it is under-
standable that they don’t appreciate the differences. Additionally,
most of the people leading the DevOps movement are from new,
leading edge companies that have architectures that enable them to
work independently. They don’t understand what it takes to coordi-
nate the work of hundreds or thousands of workers, or the benefit

CHAPTER 5 SCALING BEYOND A TEAM 55

that different approaches can provide. Instead of asking these large,
tightly coupled organizations to behave like loosely coupled organi-
zations, we should be talking about the complex systems they have
and helping them figure out how to deliver code on a more frequent
basis while maintaining all aspects of quality. They need a frame-
work for understanding what they should be doing to get everyone
in a large organization on the same page. Telling them that what they
need to do is have Development push code to production at will is
doing them a disservice. Telling them they need to solve problems
with thousands of people the same way you solve them for small
teams is wrong. Dealing with large, complex systems requires a dif-
ferent approach, and if done well, the opportunities for improve-
ments are much greater because the inefficiencies associated with
developing code across more people is much larger.

Scaling across a large organization requires segmenting the DPs into
two different types because the approaches taken will be different.
The first group consists of applications where fairly small teams can
independently develop, qualify, and deploy code and where they don’t
have to share significant code with other groups. Think micro-ser-
vices or Amazon service-oriented architectural approaches that
allow small teams to work independently. The second group consists
of larger applications or groups of applications where larger groups
of people need to work together to develop, qualify, and deploy code
because of tight coupling in the architecture. This group probably
needs to include code that is common and needs to be shared across
groups. Ideally, every application would fit in the first loosely cou-
pled architectural grouping since smaller, less complex things are
easier to manage and improve. The reality for most large, traditional
organizations, however, is that a lot of the code architecture is tightly
coupled or needs to be shared, and you can’t ignore that complexity.

56 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

Given this complexity, the next step is to take the applications that are
tightly coupled and form them into the groups that have to be devel-
oped, qualified, and deployed as a system. Next, examine each of the
groupings to see if there are fairly easy architectural changes that you
can make that enable you to break the system into two smaller, more
manageable chunks. This is an important step before starting to opti-
mize the DPs because managing and improving smaller systems is
much less complex than doing the same for the larger ones, and it
enables more localized ownership to make it successful.

Breaking the problem down into smaller more manageable chunks is
going to be challenging for organizations with tightly coupled legacy
architectures. It is also going to be difficult for very large organiza-
tions that share a common core set of code across lots of businesses.
In these cases, you are going to have to find a pragmatic approach
that can help simplify and segment the problem as much as possi-
ble. If you have a very large, tightly coupled architecture, can you
start with a smaller component in the system? If you have common
code leveraged across lots of very large businesses, can you create a
plan for that common code and how it is delivered to the businesses
instead of lumping all the businesses into a common plan? It is going
to be hard to change a large organization. Therefore, it is going to
be important to simplify and segment wherever possible. Once you

CHAPTER 5 SCALING BEYOND A TEAM 57

have identified the large, tightly coupled systems that are key to the
business and can’t be broken down any smaller, it is time to start set-
ting up and optimizing the DP.

Summary
Organizational change management is the biggest challenge when
scaling DevOps across an entire organization. I find it is much easier
to get people to own leading the cultural changes if they have the
flexibility to prioritize the improvements that will help their busi-
ness the most and if the plans are their own. The focus then becomes
helping these people learn how to apply the principles and develop
their plans. This starts by creating manageable pieces with local own-
ership that can focus on changes that will add the most value for that
specific DP. It also requires being clear about the size and complexity
of the DP because coordinating work across large and small teams
is different.

58

Chapter 6

SCALING WITH LOOSELY
COUPLED ARCHITECTURES

Scaling DevOps in large organizations with loosely coupled archi-
tectures is more about propagating the teams and approaches in par-
allel across the organization as depicted in the graphic below. In this
chapter, we will discuss the cultural changes at the team level, the
removal of barriers, and the placing of any guardrails for the team.
Culturally, you want the team to feel ownership and responsibil-
ity all the way from the business idea to working code in produc-
tion that meets the need. You want to remove barriers by providing
capabilities on demand that will support the needs of the teams and
help break down cross-organizational barriers. These teams should
be allowed as much flexibility as possible in determining how they
meet those objectives so they take ownership for the success. In large
organizations, though, it frequently makes sense to have some com-
monality. It is important to be clear about where and why these com-
mon guardrails may exist.

CHAPTER 6 SCALING WITH LOOSELY COUPLED ARCHITECTURES 59

Cultural
The nice thing about having an architecture that enables small teams
to work independently is that they can learn, adapt, and respond
more quickly than large, complex, tightly coupled systems. They are
also typically close enough to all the work going on with the team
that they can understand and respond to most issues. In these cases,
you are trying to reinforce and support team ownership for the suc-
cess of the project and extend it all the way out to working code in
production. This requires integrating quality, security, performance,
and operational perspectives into the Development team and break-
ing down the silos between different organizations. This process is
significantly different if you are working in a tightly coupled archi-
tecture, which will be covered in the next chapter.

It is helpful in these situations to reinforce ownership by having
everyone on the team take turns wearing the pager for off-shift
support rather than having separate operational support. There is
nothing like needing to personally get up at 2:00 AM to make you
think through whether the new feature is ready to release into pro-
duction on a Friday afternoon. And there is nothing like having
to work through production issues to help you understand how
to write code that will work in production and how to provide the
monitoring in the code that will make it easier to debug production
issues. This is at the core of the “you build it, you run it” mentality at
Amazon, Google, and other large, fast moving organizations. This is
also behind the two pizza team rule at Amazon where they work to
keep teams and services small enough that the team members can
understand the system and have that personal level of ownership.
This cultural end-to-end view of the product is at the core of these
teams learning and adapting, which enables them to move faster. To
support this learning you need to create a blameless culture where
people feel comfortable sharing failures so everyone can learn from
the mistakes.

The ability of these small independent teams to move fast and learn
is at the core of the movement to micro services. There are other

60 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

architectural approaches that enable small teams to work inde-
pendently, but this is the most popular one at the moment. The
idea is to encapsulate everything required for the service to run in a
micro service that can be updated independently without breaking
the broader application. It is so much easier for these small, indepen-
dent teams to move fast that wherever possible you should make the
architectural changes to support this approach. This can be through
the current popular micro services approach or other architectural
techniques that enable independence between teams.

Barriers
The other important aspect to enabling these teams to move fast is
to start removing barriers that would slow down and frustrate them.
Focus on providing them with the resources they need and remov-
ing the bureaucracy that exists in most large organizations. These
teams should not have to wait on slow moving central organizations
to provide them with what they need. They also should not have to
go through slow moving approval processes.

There is nothing more demoralizing for these small, fast moving
teams than having to wait to get an environment to test a new feature
or to wait for an environment in production where they can deploy
the code. Success in these situations really requires being able to pro-
vide environments with cloud-like efficiencies on demand for testing
and production. Teams also need to have access in test environments
to the production monitoring capabilities so they can ensure the
application is ready and has the appropriate monitoring working for
debug of production issues. The infrastructure needs to easily sup-
port canary releases so they can experiment quickly without putting
the entire customer base at risk. The leadership team needs to work
to ensure the infrastructure and tools are in place to support the
teams so they can focus on delivering business value.

The leadership team also needs to help by removing bureaucracy and
organizational barriers that exist in most large traditional organiza-
tions. The change approval boards that exist in organizations, which

CHAPTER 6 SCALING WITH LOOSELY COUPLED ARCHITECTURES 61

don’t really understand the changes the teams are implementing,
need to be replaced with more efficient processes. The barriers and
division of responsibilities across Development, QA, Security, and
Operations need to be knocked down to enable efficient collabora-
tion. Processes that were put in place for a command and control
approach need to be redesigned or eliminated to support the culture
of empowerment and accountability at the team level.

Guardrails
While moving quickly with empowered teams and letting them
make their decisions is important for organizations with loosely cou-
pled architectures, it might not be possible or practical to give them
complete independence. As you start scaling these teams across the
organization, it will be important for everyone to understand where
they have independence and where they need to use common tools
or share common processes.

For example, in tightly regulated industries, if you are going to
remove bureaucratic processes like the change approval board,
you need to ensure there are some auditable standards for moving
changes into production. Do you require the previous approver with
separation of duties to codify their approval criteria in automated
tests that enables auditable release criteria with the speed these small
fast moving teams require? Do you require canary releases to less
than X% of customers to run for Y time before complete release into
production? Leaders are going to have to help drive these types of
changes because they are big, cross-organizational changes not suc-
cessfully driven at the team level. That said, once the changes are in
place, the teams will have to work within the guidelines that have
been defined if the organization is going to pass the audits required
for regulatory approval.

There are other places where the teams might want to take advan-
tage of the efficiencies of working in a large organization. For exam-
ple, do you want to empower every team to pick their own tools for
scripting environments and deployments, or do you want to have a

62 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

common approach and more common environments to enable effi-
ciencies and leverage across the organization? This is a more diffi-
cult decision because it walks the line between empowerment and
efficiencies. Ideally, this wouldn’t be a hard and fast rule. Instead,
infrastructure and capabilities would be put in place to make using
the common tools and approach the path of least resistance so teams
naturally pick them if they meet their needs.

For practical reasons, large organizations may need to consider other
commonalities across teams to enable efficiencies in procurement
and the ability to look across the organization. For example, all the
code at Google is in one of two SCM tools where anyone can check
out and look at the code at any time. Teams cannot choose whether
to use a different SCM or make their code available. This takes away
from the team’s independence in some respects, but they decided
that the tradeoff was worth the advantage of having common tools
that enabled collaboration across the company. Organizations may
or may not want to consider similar commonality for looking at
demand in business requirements across teams. This commonality
can be driven by the ability to work across teams, or it may be driven
by the costs of buying tools and the efficiencies of enterprise licenses.

Summary
For large organizations with loosely coupled architectures, scal-
ing DevOps is more about cultivating the teams and approaches in
parallel across the organization. Small teams are able to work inde-
pendently, and unlike in large, complex and tightly coupled system,
they can learn, adapt, and respond more quickly. Create a blameless
culture where failures are shared, and everyone learns from mistakes.
These small independent teams can move fast and learn fast. Start
removing barriers that will slow and frustrate the teams, and remove
bureaucracy and organizational barriers that exist in most large
traditional organizations. There is a lot of value in empowering the
teams so they own the success of their approach. There are also valid
reasons for driving some level of consistency across large organiza-
tions. As organizations start scaling these small, fast-moving teams,

CHAPTER 6 SCALING WITH LOOSELY COUPLED ARCHITECTURES 63

it is important for the leadership teams to think through these issues
and be clear about what if any guardrails they are going to require.

64

Chapter 7

DOCUMENTING
THE DEPLOYMENT
PIPELINE FOR TIGHTLY
COUPLED ARCHITECTURES

Documenting and optimizing the DP for tightly coupled architec-
tures is an important concept and what all of this book’s chapters
have been leading up to. We have built the foundation and put every-
thing into context so you can determine how to handle the com-
plexity of large systems and appreciate the differences from DevOps
for small independent teams. For tightly coupled architectures that
require hundreds or even thousands of engineers to coordinate the
development, qualification, and deployment of code, the DP gets
more complex. One way to try to work with this complexity is to
have one big continuous integration process on the front end of the
pipeline where everyone checks in and does multiple builds a day. A
complex enterprise system can take a long time to deploy, however,
and automated testing for everything on that complex of an environ-
ment can take a while. It can result in builds with changes from too
many developers, which makes it challenging to localize the issues
during the triage process and hard to keep the builds green. So it is
important when designing complex DPs to break the design down
into more manageable pieces. This can be done by increasing the
build frequency, reducing the test time by running a subset auto-
mated testing defined as BAT, and using service virtualization to
break the system into smaller more manageable pieces. Once you
have these smaller, more manageable pieces you take the basic con-
struct of continuous integration and expand it into the integration
of stable subsystems that build up into the enterprise system with
appropriate automated quality gates.

The first step in designing the DP for a large, complex, tightly- cou-
pled system is to draw up the architecture with all the applications

CHAPTER 7 DOCUMENTING THE DEPLOYMENT PIPELINE FOR TIGHTLY COUPLED ARCHITECTURES 65

showing the couplings and interfaces. If you can build, deploy, and
run a reasonable set of BAT tests on the system frequently enough
to have a small enough number of changes that triage is efficient,
then you should use one large continuous integration process for the
entire system.

If you can’t build frequently enough to keep the number of commits
small, which is typical of large complex enterprise systems, think
about how to break this up into smaller, more manageable pieces.
Look for clean interfaces where it would be easy to mock the inter-
face with service virtualization. Ideally, you would not need this step
at all because maintaining the service virtualization is going to take
some effort. Therefore, you should avoid the step where possible by
just using build frequency to localize the offending code, but when
the build time of this complex system takes too long or there are
just so many developers working on the system that you have over
20 commits per build, it probably makes sense to break it up into
smaller subsystems that you can keep stable for integration. When
breaking it down, look for opportunities to reduce the number of
commits per build where there are natural organizational and archi-
tectural interfaces.

66 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

Once the subsystems that can be optimized based on build frequency
are defined, you need to define the DP for building each of them.
This should start with continuous integration or stage 1 of the DP
for each application, with each team owning their component with a
quality gate for keeping major issues out of the subsystem build. This
gate at each stage will be defined by a subset of BATs that will define
the minimal level of stability that you will ever allow in the system.

Next, the DP should take the latest green builds out of each of the
components and build those into a subsystem with automated sub-
system BAT testing running against the service virtualization as
many times a day as possible. Stage 2 of the DP is really continuous
integration of the components of continuous integration that have
to work together running the subsystem BAT. Stage 3 takes the latest
green build each day out of stage 2 and runs the full set of auto-
mated regression tests. This step is designed to catch issues that slip
past the BAT. If you see major drops in the regression passing rates
for a build, then you should fix the defect and add a test from the
regression suite to the BAT set. This process of always evaluating
and improving your BAT is how you work to improve the stability of
trunk over time.

CHAPTER 7 DOCUMENTING THE DEPLOYMENT PIPELINE FOR TIGHTLY COUPLED ARCHITECTURES 67

Keeping this code base up and running with green builds at this sub-
system level should be the top priority for everyone in this part of the
organization. Creating subsystems around natural organizational
boundaries where possible helps by providing clarity in respon-
sibilities for keeping these subsystems stable. Having BAT gates at
each stage helps keep the large systems as stable as possible while
localizing the ownership for fixing issues to the teams that created
the problem. These subsystems are then built and tested in the full
system without virtualization as frequently as possible, using BAT
testing in stage 4 and then full regression in stage 5 before going into
production. This is ideally how code should flow through your sys-
tem. It is nice to start with the end point in mind.

68 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

Next, understand how your current DP works. You may not call it
a DP, but there is a process for how you build up, test, and release
these large enterprise systems. It is important for the organization to
understand how that works before you start making improvements.
From a similar perspective, starting at the developer committing
code, determine the steps for building up and testing this system
Draw it up on a wall and get people together to review it for accu-
racy. This will have a lot more complexity than the simple construct
described in Chapters 2 and 3, but the concepts are similar. Once
you have completed this map, you have a first pass at your DP.

Summary
We have shown how to create a DP for a large tightly coupled archi-
tecture. It starts by breaking the system into smaller, less complex
components and subsystems that can be kept stable with appropriate
build acceptances tests for quality gates. Next, it involves building up
these smaller pieces into the larger, more complex, stable systems on
a regular basis. This approach helps to localize the identification of
issues as early in the DP as possible to improve the efficiency of the
triage process and reduce the feedback time for developers. It also
documents how code flows from a business idea to production for
complex systems, which is the first step to understanding the pro-
cesses that need to be improved. Now you are ready for Chapter 8,
where we will start optimizing the complex DPs described here.

69

Chapter 8

OPTIMIZING COMPLEX
DEPLOYMENT PIPELINES

Everything up until this point has given us the context we need
to optimize complex DPs. We understand the basic framework of
the DP with metrics for one developer and how DevOps practices
address those issues. We have covered how Development needs to
change how they work in order to make continuous integration
work. We have segmented down to the big, complex, hard-to-solve
problems. We have acknowledged that loosely coupled architectures
are best and that a lot of what you are hearing about DevOps mostly
applies to them. And we have an early view of complex DPs. Now
we are ready to deal with the complexity of large, tightly coupled
systems. It is time to get everyone to agree on the biggest issues so
we can start making improvements. It is with this macro view of the
elephant that you start achieving the organizational alignment you
need to move forward in a coordinated fashion.

DevOps helps to improve the productivity of software organiza-
tions because it starts to address the inefficiencies between people,
teams, and organizations. It also helps improve the effectiveness of
individuals by improving the quality and frequency of feedback. The
biggest opportunities for improvement, though, are across the orga-
nization, which is more important for large, complex DPs. It also
helps for small, independent teams as discussed in Chapter 6, but
since there are less people to coordinate for these organizations, the
impact of the improvements on productivity will be less dramatic.
These smaller teams will always be more nimble and able to deploy
more frequently because they are dealing with less complex systems,
which is why you should re-architect for independence whenever
possible. That said, the biggest inefficiencies in most large organiza-
tions exist in the large, complex, tightly coupled systems that require

70 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

coordination across large numbers of people from the business all
the way out to Operations.

Waste in Large Organizations
As we are trying to improve the frequency of release with quality
(DevOps) in large organizations, we need to reduce cycle time,
remove duplicate work, and eliminate waste so things can move
more quickly. It helps to understand the types of work and ineffi-
ciencies you are trying to address to help facilitate this quickness.

Product owners responsible for representing the needs of the busi-
ness can experience a lot of waste in the DP. They spend time docu-
menting requirements that are misunderstood by Development and
Test teams. They spend time documenting requirements that the
Development teams are never able to implement. They work on fea-
tures that the customers won’t use or don’t meet the need of the busi-
ness. They spend time prioritizing and re-prioritizing features that
never get developed. They waste time trying to sign off on features
in test environments where the code was not correctly deployed or
where the environment is unstable.

Developers waste time working on new features that do not meet
the expectations of the business. They waste time creating code that
does not work with features being created by others. They waste time
building new code on top of recently created defects because of slow
feedback from testing. They waste time creating features that will
never be used because it takes too long to get the minimal viable
product in front of customers. They waste time triaging defects that
were thought to be code but ended up being issues with data, envi-
ronments, and deployments. They end up debugging and fixing the
same defect more than once because all the right fixes are not cor-
rectly committed to all the right branches. They waste time localiz-
ing issues among hundreds of changes to find out the defect was with
someone else’s code and not their own.

The testing process wastes time creating and executing tests that were
not designed as the business or the developer had in mind. The QA

CHAPTER 8 OPTIMIZING COMPLEX DEPLOYMENT PIPELINES 71

organization wastes time and energy testing on a build that has the
wrong version of code, is in an environment that is not configured
correctly, or is unstable for other reasons. This leads to wasted effort
documenting defects that are not repeatable, which leads to ongo-
ing debates between Development and QA. In organizations that use
branching, QA spends a lot of time testing the same code and finding
the same defects on two different branches of the code.

The release team wastes time trying to find all the right versions of
the code and the proper definition of the environments, and getting
all the right data in place to support testing. In fact, lots of organiza-
tions spend more time and effort getting the big, complex enterprise
environments up and ready for testing than they do actually writ-
ing the code. They find out tests fail because one group overwrote
the data another group needed for testing. They find out tests fail
because the developer did not let them know they needed a patch in
the OS, or a firewall opened to support the new features. These types
of waste and inefficiencies can make it very difficult to release code,
which leads to infrequent releases and large batch sizes.

Operations is the last stage in the DP, but it can also be a large
source of waste. If there are a lot of defects being released into pro-
duction, they end up spending most of their time just firefighting.
If Development teams are not clearly communicating the changes
they are making or are not providing instrumentation in their code
for efficient debug, it is very hard to keep the applications up and
running.

Executive Lead Continuous Improvement
Addressing these inefficiencies and getting the organization focused
on improving the biggest issues in the DP requires looking across
the system and prioritizing improvements. The challenge is getting
the organization to agree on the biggest sources of waste so you can
start a focused continuous improvement process. This effort needs to
be led by a person or group of people that are chartered to own the
overall process. Because it requires looking across different groups in

72 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

the organization, this tends to be an executive or team of executives
that come together to lead the transformation. They need to be able
to prioritize improvements across the teams that will add the most
value. They also need to ensure everyone is supporting the changes
the team has decided to implement.

However, this can’t be an executive directed initiative because the
executives don’t really understand the problems well until they
spend time out in the organization getting a better feel for the issues
in the system. It needs to be more of an executive lead approach
where they are spending time out in the organization understanding
issues, prioritizing improvements, and helping to remove barriers. It
starts with the executives working with the organization to agree on
a common set of prioritized improvements that will have the biggest
impact on the business for the first iteration, which is the goal of
this framework. Then, during the iteration, the executives need to
spend time out in the organization to understand what is and isn’t
getting done. Most importantly, they need to understand why these
prioritized improvements aren’t getting done because that starts to
highlight the improvements that should be prioritized for the next
iteration. This progress should be reviewed with a checkpoint at the
end of each iteration to review what got done, what didn’t get done,
what was learned, and what are the deliverables for the next itera-
tion. It is this ongoing, continuous improvement effort that coor-
dinates the improvement efforts. For more details see Leading the
Transformation by Gary Gruver and Tommy Mouser.

The first step in leading the transformation is getting the technical
and managerial team together to gain a common understanding of
the biggest sources of waste and inefficiencies in the system (a com-
mon view of the elephant). This analysis should be done for each
DP by the people responsible for working on those applications. The
team needs to start with the architecture and work through the pro-
cess defined in Chapter 7 to document a common understanding
of how the DP works. Next, we will walk through the metrics the
team should work to capture for the DP to give everyone a common
understanding of the biggest sources of waste and inefficiencies that

CHAPTER 8 OPTIMIZING COMPLEX DEPLOYMENT PIPELINES 73

should be addressed. The goal of this exercise is to agree on the objec-
tives for the first monthly iteration. The intent is to identify tangible
work that the team feels can and should be completed in the next 30
days—in other words, work that will help the organization the most.
There are four types of metrics in addition to the ones reviewed in
Chapter 3 that are important to these more complex DP that we will
describe next. The team should populate their DP and discuss the
issues before agreeing on the objectives for the first month. Again,
don’t worry about getting the metrics perfect or accurate to three
significant digits. The goal here is to provide enough metrics that the
organization can agree on the biggest sources of waste so they know
where to start the continuous improvement process.

Mapping Waste Associated with Duplicate Work
The first step in identifying waste and opportunities for improvement
in the DP is to look for duplication of work. If you are using branch-
ing extensively, this is probably one of the biggest sources of wastes.
This usually happens with different branches of code where you are
either duplicating the entire DP or significant portions of it. This can
be due to branching during the release process where you isolate
to drive to production-level stability or for product organizations
to support a variety of products. Either way, it forces duplication of
work in the system. Developers need to ensure they are committing
the correct code to the branches where it is required and not to the
ones where it isn’t. Testing needs to occur on both branches, which
can be really problematic and expensive if there is any manual testing
left in the system. Additionally, branching drives duplicate efforts in
debugging and triaging defects. Therefore, branches should be seen
as a source of waste if they are very long lived and require a signifi-
cant amount of effort to support. In the beginning, they usually exist
for a reason, but as you start working to improve your development
and deployment processes, you should look to address those reasons
so the duplicate work associated with branches can be minimized.

74 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

The other place that branching and duplication of work tends to
occur is in product development organizations with embedded firm-
ware. Here duplication of work is associated with getting the code up
and running and qualified on the different products that frequently
have hardware differences. To minimize this waste it is important
to either minimize the hardware variability or architecturally isolate
these differences from as much of the common code as possible. The
architecture should be designed to have small components that are
unique for specific products to deal with the hardware differences
and should be minimized as much as possible. When possible, com-
ponents that are common but need to behave differently for different
products that need to leverage code should not be branched because
of the duplication of work. For these components, instead of embed-
ding all the product differences in the component, there should be
a file that contains the product differences in one place that is ref-
erenced by the component code. Lastly, there is platform code that
should be common across all the products that should not branch.

CHAPTER 8 OPTIMIZING COMPLEX DEPLOYMENT PIPELINES 75

Mapping Cycle Time and Batch Sizes
The next step in analyzing the DP is to evaluate it for cycle time
and batch sizes. DevOps is all about increased frequency, which is
enabled by shorter lead times and smaller batch sizes. Shorter cycle
times and smaller batch sizes help with rework waste from slow feed-
back, and smaller batch sizes also help with triage efficiency. Cycle
time and batch sizes are typically driven by repetitive work or fixing
defects before release. You should start the automation of repetitive
work where it will have the most benefit for cycle time. Cycle time is
important because it drives feedback times to minimize the amount
of work on features that customers won’t use, that won’t work with
other code, or that won’t work in production. The reduction in cycle
time minimizes the time different groups across the DP invest in
things that won’t work together. They can then identify the issues
and ensure those issues are addressed as soon as possible.

The reduction in cycle time will also help to reduce the batch size,
which makes triage in large, complex systems simpler because there
are fewer changes since the last time the tests were passing. To reduce
cycle time, you are going to have to automate long running manual
processes, such as testing, and manual processes that are painful,
but that you would like to do more frequently, such as deployment.
Automating these repetitive tasks is required not only to reduce the
cycle time, but also to make small batch sizes with simpler triage
affordable. It has the added benefit of eliminating errors that fre-
quently occur with manual processes. When you focus on reducing
cycle time with smaller batches, it also forces you to fix issues that
have been plaguing your organization for years. When you were not
building, deploying, testing, or releasing as frequently, your orga-
nization could not see the issues as repetitive, and it was just mus-
cling its way through the issues every time. As you start increasing
the frequency, this is not possible. You have to start understanding
and addressing these issues and fixing them with automation where
possible.

76 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

This example of a cycle time map, while simplified to major subsys-
tems, does help to target major bottlenecks. It shows stage 4 taking
three hours, which is pretty good, but subsystem II is stuck at three
days with one day to deploy and two days to test. This would be a
good target for improving cycle time with some deployment and test
automation. Additionally, if the deployment into production is tak-
ing a large group of people 18 hours, you are not going to want to
release more frequently until those issues are addressed.

Mapping Types of Issues
Next, we need to look at the DP map in terms of the kind of issues
we are seeing at each stage because the type of issues will define
what we start fixing first. With this map we are really trying to sep-
arate the new/unique work issues from issues caused by repetitive
work because the solution for these types of issues will be different.
Additionally, we want to understand the type of repetitive issues we
have so we know what to prioritize fixing. The errors in repetitive
work are addressed with automation, which also helps with cycle
time. To understand which repetitive work in the DP should be
prioritized for fixing, you should look at the cycle time and type of
issues map to determine where to start. Additionally, if a significant
portion of your issues are non-code related, you are going to want
to automate your testing in ways that will make your triage process

CHAPTER 8 OPTIMIZING COMPLEX DEPLOYMENT PIPELINES 77

more efficient. Instead of just building an environment, deploying
code, configuring data, and running system tests, start using post-de-
ployment validation steps at the end of each step to ensure the step
was completed successfully and is ready for code testing. Then, when
you run the system tests you can find code issues instead of starting
a long, drawn out triage process across code, environments, deploy-
ments, and data.

This example map shows that code is not a significant part of the
problem. In this case, if you were to start your DevOps journey by
gating code for your developers, you would not be very successful.
The developers would start by responding to all the failures, but
once they spent time debugging and realized that the issues weren’t
very often associated with their code, they would disengage from
responding to the feedback, and your transformation would falter.
Instead, in this example the team should focus on automating their
environments and getting those definitions under version control
so the environment issues are not overwhelming the DP. Next, they
would need to address the consistency of the test automation because
if these tests can’t be used as a reliable gate for catching code issues,
they are not very helpful.

78 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

Mapping Sources of Code Issues
Code issues are new and unique work. The key here to removing
waste lies in minimizing the time spent working on code that does
not work together, does not work in production, and does not meet
the business intent. You want to find these issues as quickly as possi-
ble to minimize waste. You also want to minimize the impact of these
defects on the rest of the system. This is done by reducing cycle time
and gating defects from impacting the stability of the system. The
cycle time map will be used to drive feedback frequency. Mapping
the sources of code issues will help you understand how to prioritize
creating or improving quality gates. These quality gates are a really
important part of improving efficiencies in large, complex systems.
These gates push the ownership for triaging and solving the issues
to the people who created the problem and, more importantly, they
improve the stability of the larger complex system so it is easier to
triage. You should start with the subsystem that is leading to the most
code defects and create a code gate for that application or subsystem.
Start at the last integration point before production and work your
way backwards, creating gates and making the system more stable.

This example of the source of code defects shows that the majority of
the defects in stage 4 are coming from subsystem I. It would be nice
to automate the testing and gates for every subsystem from the start,

CHAPTER 8 OPTIMIZING COMPLEX DEPLOYMENT PIPELINES 79

but that is just not realistic for most organizations. This map shows
that you should prioritize investments in automated testing and
improving the gates for subsystem I because it is causing the most
issues. Next, move onto subsystem II when you have the bandwidth
or it becomes the next biggest source of issues. It is this process of
prioritizing test automation and gates for continuous improvements
that provides code that is more stable on an ongoing basis and is
closer to release quality for more frequent releases.

This new and unique work for software will always be code but for
embedded systems this gating is potentially new hardware and firm-
ware subsystems that are not ready for product integration. Here, it
is important to create gates in your product development life cycle
to ensure these subsystems are ready before committing to using
new HW on the platform. This requires a longer-range view of the
DP, but the basic principle of gating instabilities from impacting the
broader system applies.

The other big source of inefficiencies in the time to find code issues is
front-end branching. This is where different teams each take a branch
to create new capabilities. They work on the branches until the new
features are ready and stable and then they integrate them on trunk.
The problem with this way of working is that different teams on dif-
ferent branches don’t see the interactions between the new code they
are creating until it is merged to trunk. As we discussed in Chapter
4, moving away from this method is a big cultural change for most
organizations, but it is also a big source of waste in most big, com-
plex systems.

Putting It All Together
The graphics and metrics presented in this chapter can show addi-
tional complexities that are important to think about with tightly
coupled systems. Ideally, you would want your team to have their
entire DP mapped out on the wall, including as many of the metrics
from this chapter and Chapter 3 as possible. It is this macro view of
the elephant that you can use to get your organization aligned on

80 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

where to start. The executives need to have the team review the map-
ping of all the metrics on your DP and see if you can get everyone to
agree on the biggest issues and where to start.

When you are working on this alignment, it is very important to
ensure that you have a repeatable process for gating code. The fol-
lowing questions are formulated to help you on that path:

• For each stage in the DP do you have a stable environment for
gating code?

• Are the automated tests reliable, maintainable, and triagable?

• Can you run all the tests multiple times in random order and
get the same answer?

• Can you redeploy the same code and run the same tests and get
the same answer? If not, do you need to start by focusing on the
test and or environment/deployment issues?

• Are there certain applications that cause most of the defects in
the enterprise system integration? Should you look at gating
those applications first?

• How long does it take to build each stage of the pipeline?

• How long does it take to test each stage of the DP?

• What is the source of defects at each stage in the DP?

In Chapter 3, we talked about capturing the source of issues based on
code, environment, deployment, data, or tests. In more complex sys-
tems like this with integration points, it is also important to under-
stand the source of the code defects in terms of the contributing
subsystem. This becomes really important in large, complex organi-
zations. Getting everything about environments, deployments, tests,
and databases (repetitive work) automated is going to take time. You
want Development and Operations starting the automation in the
areas where you are seeing the most issues or longest cycle times

CHAPTER 8 OPTIMIZING COMPLEX DEPLOYMENT PIPELINES 81

across the DP. If your big issues are code, you work on gates with test
automation at integration points starting with the source with the
most code issues. If your biggest issues are repetitive tasks, you start
with automation where it adds the most value in terms of repeatabil-
ity and speed.

Summary
The process outlined in this chapter is going to take some time and
be a journey for the organization. It is important to get everyone
aligned so you are going through the journey as a team. There will be
missteps and mistakes along the way, but if it is the team’s plan, they
will make it successful. The important part is getting them to agree
on where to start and to be willing to engage with the team on the
journey. I would recommend against planning this effort too far into
the future because everyone is going to learn a great deal about what
needs to be changed as they start implementing improvements. As I
work with organizations, they frequently find that what they initially
felt was the biggest issue was just the first layer of the onion. In these
cases, if they had created a long term plan for improvement, it would
have required a complete rework of the plan when they discovered
the next layer of the onion. Instead, up front, work to get agreement
across the business that you will invest X% of your capacity for these
improvement efforts, then get started with the continuous improve-
ment process using your map of the DP as the guide. This enables
you to optimize complex DPs. Now that you understand this level of
optimization, it is essential to look at the practices for tightly versus
loosely coupled architectures.

82

Chapter 9

PRACTICES FOR TIGHTLY
VERSUS LOOSELY
COUPLED ARCHITECTURES

First, I want to acknowledge that everything you are hearing about
DevOps practices are correct, but a lot of it best applies if you have
10 to 20 person problems. The perspective you have on DevOps and
how to improve flow in your organization is going to depend largely
on the size of the organization and the coupling in your architecture.
We have covered a lot of the differences so far, but they are profound
enough that it makes sense to review the biggest differences and why
they exist in a more sustained and detailed way.

Executive Leadership versus Empowerment
For organizations with small teams that can work independently,
the executive’s role is less critical. These teams can come together
with grass roots efforts to improve the way they develop, qualify, and
deploy code on their own. They may need some roadblocks removed
and some support, but the role of the executive is not as critical.

For large, complex systems, this is not the case. You need an exec-
utive or a team of executives to look over the creation and optimi-
zation of the DP to ensure everything is working well together and
that parts of the organization aren’t sub-optimizing the system to
implement their view of DevOps. It needs to be the executive’s plan,
and they need to own it when working with the organization to pri-
oritize and implement changes so that they also take ownership for
making it successful. It also needs to involve ongoing work with the
team to understand what is working and what needs to be improved
next. Without this ongoing engagement, you are much more likely
to create a DevOps elephant that has all the right parts, but doesn’t
look like or work like the elephant the business needs. That is going
to require a person or team to constantly look at how the code is

CHAPTER 9 PRACTICES FOR TIGHTLY VERSUS LOOSELY COUPLED ARCHITECTURES 83

flowing through the system, analyze it for waste, and work with the
team to prioritize the improvements. This is going to be a journey
that is somewhat unique for each DP, which is going to require lead-
ers who are willing to engage in the details of the process and guide
the efforts.

Production Deployment
Saying that DevOps requires developers to push code into produc-
tion without any approvals is a classic example of how understanding
how DevOps is used in loosely coupled architectures and applying
that to tightly coupled architectures is not the best practice. In orga-
nizations with loosely coupled architectures, one person can under-
stand the entire application and fix it quickly if it fails in deployment.
These organizations can also test in hours and have trunk at produc-
tion-level quality. For them, waiting for the approval is the long lead
time item. For most enterprises starting DevOps, the approval time
is so far down the pareto chart that it is hard to see why you would
even bother. Current DevOps thinking says that in order to do
DevOps, developers must be able to push into production. This flies
in the face of ITIL with separation of duties, and it is a nightmare to
audit for regulated groups. People hear this and say, “Well, if that is
DevOps, I can’t do DevOps because I am regulated. Besides, when
the ITIL process people or auditors hear this, they will throw up all
sorts of roadblocks.” As a result of this attitude, DevOps thinking is
fighting an industry battle to get people to agree that separation of
duties is not a requirement for regulatory so that enterprises can do
DevOps. This is a misguided fight. It misses the point.

DevOps thinkers are getting so caught up in this debate that they are
ignoring the six weeks it takes to test the code and get it production
ready. There are so many other things these organizations can be
doing to remove waste and increase the frequency of deployments
without taking on this political battle that won’t provide much ben-
efit. The large, tightly coupled organizations would be better served
by mapping their complex DPs and working to address the waste
and inefficiencies that exist in their organization than by saying they

84 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

must do X to be doing DevOps. The executives need to be actively
engaged in this process to ensure the changes being implemented
in the organization are providing the most value instead of fighting
political battles that won’t help much. Getting everyone to embrace
these new ways of working is going to be challenging. It is going
to require the executives’ commitment to leading the change, which
will require prioritizing changes that will improve the flow of value
through the system, not just “doing DevOps.”

Additionally, in small teams when the developers are pushing code
into production, the likelihood that someone they don’t know about
is pushing in conflicting code changes at the same time they are, is
fairly low. If there are hundreds of developers working on a tightly
coupled system who can independently deploy code whenever
they like, the likelihood of finding issues in production goes way
up. Therefore, it does not make sense to have developers pushing
directly into production. Instead, in large systems the developers
should check code into the SCM once they feel it is ready and the
right level of pretesting has been completed. After that, the DP is
automatically kicked off with the continuous integration process to
find and resolve conflicts in preproduction test environments. The
DP then moves this code together with all the other changes through
each stage of the DP. If a quality gate fails, then the developers in
that batch need to respond and react to the failure, but they are not
responsible for deploying the code into production. The deployment
into production is the job of the automated DP. This is very different
from loosely coupled systems, where developers independently push
into production, but it is required when you are trying to coordinate
the work across hundreds instead of tens.

Environments
The requirements for environments are a bit different for small teams
versus complex systems. For small teams, the environments close to
the developers are much more similar to the production environ-
ments because their code is much more encapsulated. For large
tightly coupled systems, the developers often don’t understand the

CHAPTER 9 PRACTICES FOR TIGHTLY VERSUS LOOSELY COUPLED ARCHITECTURES 85

complexities of the production environments. Additionally, the peo-
ple that understand the production environments don’t understand
well the impact of the changes that developers are making. There
are also frequently different end points in different test environment
at each stage of the DP. No one person understands what needs to
happen all the way down the DP. Therefore, managing environments
for complex systems requires close collaboration from every group
between Development and Operations.

This collaboration is much more effective if the deployment process
and environments are under version control where everyone can
see exactly who changed what and when. It is also more important
that everyone understands how a change to these environments is
going to be qualified to ensure it works with every stage in the DP.
This is less important for small teams with less complexity and fewer
stages between development and production. These small teams are
more concerned about consistency across the DP and speed. This
has some implications for the move to containers. They provide a
significant quick win for small teams because they can move very
fast and get the consistency they require. The containers also provide
significant advantages for complex environments by encapsulating
the complexity of the deployment and environment definition, but
these teams will need to make sure the definitions of the contain-
ers are well documented and tracked in the SCM for collaboration.
Additionally, they will need to think through what is changing and
how they qualify changes to ensure they work at each stage in the DP.

There is another difference for environment availability for the com-
plex DP. In the basic construct, you are concerned about how long it
takes to provide a developer with an environment for testing before
pushing code into production. You need environments on demand
so developers are not waiting and can validate their changes easily
so they catch their own defects. This requires an environment. In
large, complex systems, once developers think code is ready, instead
of pushing into production, they should just commit it to the SCM.
The DP pipeline then monitors the SCM for changes and kicks off
builds that flow through the DP. This creates an additional need

86 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

for environments to support the DP. You need the ability to set up
these environments easily, but once this is done, it is not really an
environment-on-demand situation. It needs to be rebuilt on a reg-
ular basis with the latest definition of infrastructure as code, but
the demand of DP environments should not be that variable. This
may help to address the concern some large organization have that
DevOps means giving production-level access to developers and let-
ting them commit code. With a well-defined DP that is not the case.
The pipeline deploys into product as long as the code meets all the
gating requirements defined in terms of automated tests by the cur-
rent approvers.

This automated DP pipeline can also cover the concerns with the
approval process when that becomes the bottleneck, which tends
to be more important in large complex organizations. In this case,
instead of removing the separation of duty and all of those concerns,
simply have the person responsible for the approval process describe
the criteria they use for approval so you can create an automated
test to represent their signoff. This approach has a few advantages.
First, it forces more rigor into a somewhat arbitrary “management
approval” process; they have to be clear about the criteria. Second,
this approval process is documented in the SCM with an automated
test so everyone can see and suggest modifications if required. Third,
it is fast and automated by the DP so nobody is waiting around for
manual approvals.

Quality Gates
For tightly coupled organizations, it is more important to build up sta-
ble enterprise systems using a well-structured DP with good quality
gates. Before the transformation, many of these organizations spend
a lot of time and effort setting up very complex enterprise test envi-
ronments where they do the majority of their testing. These large test
environments can be very expensive and hard to manage, so they are
not a very efficient approach for finding defects. For these organiza-
tions, it is much more important to push the majority of testing and
defect fixing down into smaller, less complex test environments with

CHAPTER 9 PRACTICES FOR TIGHTLY VERSUS LOOSELY COUPLED ARCHITECTURES 87

quality gates to keep defects out of the bigger more complex environ-
ments. This helps to reduce the cost and complexity of the testing.
It also helps with the triage process because the issues are localized
to the subsystem or application that created them. These types of
issues really don’t apply to loosely coupled organizations where the
DP does not have to pass through these complex test environments.
In these situations it is more practical to quickly and easily deploy
code into production and then use techniques like canary releases to
provide quick feedback to developers on small changes.

In large, tightly couple systems, the automated system testing
becomes much more important. With loosely coupled systems,
quick running unit tests can frequently find most of the issues. With
tightly coupled systems, by definition, that is not the case. It requires
creating effective system tests that can quickly find the unknown
consequences of a change.

The small teams with decoupled architectures are also frequently
working on relatively new applications where the code was writ-
ten when unit testing was the expectation or where the application
is still small enough that it is possible to add the required unit test
coverage. This is frequently not the case with large, tightly coupled,
legacy applications, where unit tests don’t exist and you can’t justify
the investment to go back and add them. In these situations, it is
much more important to start automating your current manual test-
ing, which is frequently at the system level. If the tests are important
enough to run manually, they are important enough to automate so
you can eliminate the time and expense of the manual execution. It
does, though, make sense to review the tests before automating to
see if they can be eliminated because they are no longer valuable.
However, the primary goal is going to be creating enough automated
testing to turn off the manual tests so you can go faster and then over
time plugging holes in the testing with more automation as defects
make it to the next stage in the DP.

88 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

Specialization versus Generalist
For organizations with small teams that can work independently,
it makes sense for the team to take end-to-end ownership for the
system. This tends towards an emphasis on the generalist who can
cover the process from business idea to supporting it in production.
This approach tends to break down when the system gets so big and
complex that not everyone on the team can understand the system.
Here it makes more sense to have more specialization. For example,
having developers wear pagers and not having a DevOps team, is a
trend toward generalization. This works well for small teams because
when the developer is paged out, the service they are supporting is
small enough that they probably know what to fix or at least who
to call to get help. It is also easy for that small team to add some
Operations perspective to the groups to figure out how to own their
service end to end.

This is not the case when you have hundreds or thousands of people
working in a tightly coupled system. If a developer is paged out to fix
a problem, the likelihood that it is due to code they know anything
about is pretty low. It may create some empathy for what Operations
is dealing with, but they aren’t very likely to be in a position to help.
Additionally, adding an Operations person to the Scrum team in
a tightly coupled system may help with environments or a simple
continuous integration process, but they are not likely to design,
create, maintain, and optimize a large complex DP. This is going to
take more of a structured effort with specialization. It could be led
by Operations, Development, QA, Release, or a DevOps team, but
someone is going to have to play that role.

Green Builds
When dealing with small teams, their ability to recover from red
builds is probably more important than keeping the build green.
They should not be so afraid of breaking the build that they spend
too much time and effort before every commit making sure it is
perfect. They should be able to use the infrastructure of the DP to

CHAPTER 9 PRACTICES FOR TIGHTLY VERSUS LOOSELY COUPLED ARCHITECTURES 89

provide that feedback as long as they are reacting to the feedback
quickly and getting back to green. This applies to small teams that
can work independently, but it also applies to stage 1 continuous
integration in tightly coupled systems. As long as the teams can get
back to a good build quickly and do so without impacting too many
people, it makes sense to leverage the infrastructure of the DP. This,
though, starts to change as you get further down more complex DPs.
It starts impacting more people, and there is the potential for a lot
of different people to break the build. In these situations, it is much
more important to keep the builds green so code can successfully
flow through the system. The more people it impacts and the longer
it takes for a build and test cycle, the more important it is to catch the
issues further up the DP where the impact can be localized.

Summary
The general DevOps principles are the same for large and small
DPs—it is the practices that differ depending on the size. In princi-
ple, DevOps is all about how to improve the frequency of deployment
while maintaining all aspects of quality, which requires coordinating
work across people. As outlined here, however, the practices that you
use for coordinating the work across tens of people versus hundreds
of people can and should be different. Understanding these differ-
ences prepares you to understand the impact of the movement to
DevOps in more complex, larger organizations and the approaches
you should use.

90

Chapter 10

THE IMPACT OF MOVING TO
DEVOPS IN LARGER, MORE
COMPLEX ORGANIZATIONS

Once all the changes we have discussed in this book are in place,
they can have a dramatic effect on how the business works. They
impact how we manage software development, how we run the ITIL
process, and how we do auditing.

Large software projects are hard to manage. It is difficult to coor-
dinate the designs and work across different Development teams
that have code that has to work together. Traditional organizations
put lots of meetings and checkpoints in place to coordinate this
work. This is especially important if the development organization
is geographically dispersed and even more so if there are different
contractors working on the code. The inefficiencies and waste asso-
ciated with trying to understand and coordinate this work can be
huge. Once you have a well-structured, rigorous DP in place, you
will find that the working code is the forcing function that aligns
and coordinates all this work. The teams and different contractors
all need to be checking in their code on a regular basis to ensure it
all works together, and they must be responsible for resolving those
issues real-time if they are going to make it through the quality gates.
You will find with the DP that working code is the forcing function
that aligns all these different Development teams. The same thing
happens when all the different organizations, from Development
through Operations, are using infrastructure as code to coordinate
their work. That working code becomes the forcing function that
gives those teams the common objective of keeping the code work-
ing in a production-like environment. The other big change is that
holding big meetings, or Scrum of Scrum meetings, become less
important because everyone can watch the working code progress
down the DP to understand status.

CHAPTER 10 THE IMPACT OF MOVING TO DEVOPS IN LARGER, MORE COMPLEX ORGANIZATIONS 91

The area where there are big changes with the ITIL processes are for
configuration management. With ITIL, any changes to production
configurations were manually documented in change management
tracking tools, manually approved by management, and manually
implemented. With a rigorous DP, all that tracking, documenting,
and implementation is all automated, and the changes are tracked
in the source control management tool that is designed for track-
ing changes. The implementation uses this documented automation
code to make any changes, ensuring what we said was going to hap-
pen actually happened like we said it would. Additionally, it requires
that the approval processes that used to be arbitrary management
decisions are documented with automated tests that support more
repeatable and rigorous criteria for release.

This fundamental shift to a DP provides significant improvements
in the auditing and compliance processes required for most organi-
zations. Previously, conducting an audit required working through
a sampling of change tickets to see if the appropriate people had
approved the change before it went into production and making sure
that the change implemented was actually what had been approved.
This is what happens before creating a rigorous DP. Validating com-
pliance requires auditing a small sample of the change requests to
ensure everyone in the organization followed the process and man-
ually going through different systems to pull data to show the pro-
cess was followed. After the automated DP is in place and everything
is automatically documented, it is much easier to ensure that the
process is correctly followed for every change. This approach really
takes advantage of what computers do very well, which is to repeat
the same thing, the same way every time. The automation may ini-
tially be wrong, but once you get it fixed, you can count on it being
done the same way every time, which is something very difficult to
get humans to manually implement. The changes and criteria for
approval are also automatically documented in the SCM tool where
it is very easy for the auditors to see exactly who changed what and
when. It is a huge improvement for both the efficiency and effective-
ness of auditing, but it is also a big change. Therefore, it is important

92 STARTING AND SCALING DEVOPS IN THE ENTERPRISE

to include the auditors early in the process. Help them understand
how this is going to help them do their job better and include them
in the process so they can help define what data they need and where
it will be kept. This is about organizational change management with
the auditors too, so it important to include them in the plans so they
will own making their ideas successful.

Moving to DevOps for large, tightly coupled organizations is a big
job. It requires addressing waste and inefficiencies that have existed
in your organization for years. The DP with the framework and
metrics provided, though, provides a systematic approach for get-
ting everyone one on the same page for optimizing the entire sys-
tem. DevOps practices provide techniques for addressing waste to
improve deployment frequency while maintaining all aspects of
quality. The principles are the same across large and small teams, but
the practices can and should be different.

In large, complex systems, it is important for the executives to pull
the technical and managerial leaders for a DP together and to get
everyone to agree on where there are the biggest opportunities for
improvement. They need to kick start and lead the ongoing contin-
uous improvement process. By following this process and using the
DP framework provided by Jez Humble and David Farley, they can
align the organization on a common plan that will result in a high
performing DevOps elephant. This journey is going to take time
and require that the executives engage with the teams to prioritize
improvements to address waste and inefficiencies that have existed
in most organizations for years, but if these companies expect to
survive in industries where competition is being defined more and
more by software, their software development and delivery processes
must be improved.

 93

BIBLIOGRAPHY
Lean Enterprise: How High Performance Organizations Innovate at
Scale; Jez Humble, Joanne Molesky, and Barry O’Reilly

A Practical Approach to Large-Scale Agile Development; Gary Gruver,
Mike Young, and Pat Fulghum

Toyota Kata: Managing People for Improvement, Adaptiveness, and
Superior Results ; Mike Rother

Cucumber & Cheese: A Tester’s Workshop; Jeff Morgan

Continuous Delivery: Reliable Software Releases through Build, Test,
and Deployment Automation ; Jez Humble and David Farley

Refactoring Databases: Evolutionary Database Design; Scott W.
Ambler and Pramod J. Sadalage

Leading the Transformation “Applying Agile and DevOps Principles
at Scale”; Gary Gruver and Tommy Mouser

Implementing Lean Software Development: From Concept to Cash;
Mary and Tom Poppendieck

Value Stream Mapping: How to Visualize Work and Align Ledership
for Organizational Transformation; Karen Martin and Mike Osterling

The Phoenix Project: A Novel About IT, DevOps, and Helping Your
Business Win; Gene Kim, Kevin Behr, and George Spafford

		2016-10-26T13:19:55-0400
	Preflight Ticket Signature

