
Travis	CI	vs	GitLab
GitLab	compared	to	other	DevOps	tools

Travis	CI	is	a	hosted,	distributed	continuous	integration	service	used	to	build	and	test	software	projects	hosted	at	GitHub.	Travis	CI	also
offers	a	self-hosted	version	called	Travis	CI	Enterprise	which	requires	either	a	GitHub	Enterprise	installation	or	account	on	GitHub.com.	In
contrast,	GitLab.com	and	GitLab	self-hosted	versions	offer	both	source	code	management,	issue	tracking,	continuous	integration,	and	many
more	devops	tool	chain	requirements	in	a	single	application,	while	still	also	working	with	GitHub.

When	Travis	CI	has	been	activated	for	a	given	repository,	GitHub	will	notify	it	whenever	new	commits	are	pushed	to	that	repository	or	a	pull
request	is	submitted.	Travis	CI	will	then	check	out	the	relevant	branch	and	run	the	commands	specified	in	.travis.yml,	which	usually	build	the
software	and	run	any	automated	tests.	When	that	process	has	completed,	Travis	notifies	the	developer(s)	in	the	way	it	has	been	configured
to	do	so.

Although	the	Travis	CI	source	is	technically	free	software	and	available	piecemeal	on	GitHub	under	permissive	licenses,	the	company	notes
that	it	is	unlikely	that	casual	users	could	successfully	integrate	it	on	their	own	platforms.	(ref:	wikipedia).	In	contrast,	GitLab	is	open	source
and	open	core	and	available	for	everyone	to	contribute.

FEATURES

Application	performance	monitoring

GitLab	collects	and	displays	performance	metrics	for	deployed	apps,	leveraging	Prometheus.
Developers	can	determine	the	impact	of	a	merge	and	keep	an	eye	on	their	production	systems,
without	leaving	GitLab.

Learn	more	about	monitoring	deployed	apps

Application	performance	alerts

GitLab	allows	engineers	to	seamlessly	create	service	level	indicator	alerts	and	be	notified	of	any
desired	events,	all	within	the	same	workflow	where	they	write	their	code.

Learn	more	about	creating	SLI	alerts

GitLab	server	monitoring

GitLab	comes	out	of	the	box	enabled	for	Prometheus	monitoring	with	extensive	instrumentation,
making	it	easy	to	ensure	your	GitLab	deployment	is	responsive	and	healthy.

Learn	more	about	monitoring	the	GitLab	service

https://en.wikipedia.org/wiki/Travis_CI
https://docs.gitlab.com/ee/user/project/integrations/prometheus.html
https://docs.gitlab.com/ee/user/project/integrations/prometheus.html#setting-an-alert
https://docs.gitlab.com/ee/administration/monitoring/prometheus/index.html

Cycle	Analytics

GitLab	provides	a	dashboard	that	lets	teams	measure	the	time	it	takes	to	go	from	planning	to
monitoring.	GitLab	can	provide	this	data	because	it	has	all	the	tools	built-in:	from	the	idea,	to	the	CI,
to	code	review,	to	deploy	to	production.

Learn	more	about	Cycle	Analytics

Built-in	Container	Registry

GitLab	Container	Registry	is	a	secure	and	private	registry	for	Docker	images.	It	allows	for	easy	upload
and	download	of	images	from	GitLab	CI.	It	is	fully	integrated	with	Git	repository	management.

Documentation	on	Container	Registry

Preview	your	changes	with	Review	Apps

With	GitLab	CI/CD	you	can	create	a	new	environment	for	each	one	of	your	branches,	speeding	up
your	development	process.	Spin	up	dynamic	environments	for	your	merge	requests	with	the	ability
to	preview	your	branch	in	a	live	environment.

Learn	more	about	Review	Apps

A	comprehensive	API

GitLab	provides	APIs	for	most	features,	allowing	developers	to	create	deeper	integrations	with	the
product.

Read	our	API	Documentation

Built	for	containers	and	Docker

GitLab	ships	with	its	own	Container	Registry,	Docker	CI	Runner,	and	is	ready	for	a	complete	CI/CD
container	workflow.	There	is	no	need	to	install,	configure,	or	maintain	additional	plugins.

Cloud	Native

GitLab	and	its	CI/CD	is	Cloud	Native,	purpose	built	for	the	cloud	model.	GitLab	can	be	easily
deployed	on	Kubernetes	and	used	to	deploy	your	application	to	Kubernetes	with	support	support
out	of	the	box.

Kubernetes	integration

file:///features/cycle-analytics/
https://docs.gitlab.com/ee/user/project/container_registry.html
file:///features/review-apps/
https://docs.gitlab.com/ee/api/
file:///kubernetes/

Container	debugging	with	an	integrated	web	terminal

Easily	debug	your	containers	in	any	of	your	environments	using	the	built-in	GitLab	Web	Terminal.
GitLab	can	open	a	terminal	session	directly	from	your	environment	if	your	application	is	deployed
on	Kubernetes.	This	is	a	very	powerful	feature	where	you	can	quickly	debug	issues	without	leaving
the	comfort	of	your	web	browser.

Learn	more	about	the	web	terminal

Comprehensive	pipeline	graphs

Pipelines	can	be	complex	structures	with	many	sequential	and	parallel	jobs.	To	make	it	a	little	easier
to	see	what	is	going	on,	you	can	view	a	graph	of	a	single	pipeline	and	its	status.

Learn	more	about	pipeline	graphs

Browsable	artifacts

With	GitLab	CI	you	can	upload	your	job	artifacts	in	GitLab	itself	without	the	need	of	an	external
service.	Because	of	this,	artifacts	are	also	browsable	through	GitLab's	web	interface.

Learn	more	about	using	job	artifacts	in	your	project

Scheduled	triggering	of	pipelines

You	can	make	your	pipelines	run	on	a	schedule	in	a	cron-like	environment.

Learn	how	to	trigger	pipelines	on	a	schedule	in	GitLab

Code	Quality

Code	Quality	reports,	available	in	the	merge	request	widget	area,	give	you	an	early	insight	into	how
the	change	will	affect	the	health	of	your	code	before	deciding	if	you	want	to	accept	it.

Learn	more	about	Code	Quality	reports

Multi-project	pipeline	graphs

With	multi-project	pipeline	graphs	you	can	see	how	upstream	and	downstream	pipelines	are	linked
together	for	projects	that	are	linked	to	others	via	triggers	as	part	of	a	more	complex	design,	as	it	is
for	micro-services	architecture.

Learn	more	about	multi-project	pipeline	graphs

Protected	variables

You	can	mark	a	variable	as	"protected"	to	make	it	available	only	to	jobs	running	on	protected
branches,	therefore	only	authorized	users	can	get	access	to	it.

Learn	how	to	use	protected	variables

https://docs.gitlab.com/ee/ci/environments.html#web-terminals
https://docs.gitlab.com/ee/ci/pipelines.html#pipeline-graphs
https://docs.gitlab.com/ee/user/project/pipelines/job_artifacts.html
https://docs.gitlab.com/ee/ci/triggers/#using-scheduled-triggers
https://docs.gitlab.com/ee/user/project/merge_requests/code_quality_diff.html
https://docs.gitlab.com/ee/ci/multi_project_pipeline_graphs.html
https://docs.gitlab.com/ee/ci/variables/#protected-variables

Environments	and	deployments

GitLab	CI	is	capable	of	not	only	testing	or	building	your	projects,	but	also	deploying	them	in	your
infrastructure,	with	the	added	benefit	of	giving	you	a	way	to	track	your	deployments.	Environments
are	like	tags	for	your	CI	jobs,	describing	where	code	gets	deployed.

Learn	more	about	environments

Environments	history

Environments	history	allows	you	to	see	what	is	currently	being	deployed	on	your	servers,	and	to
access	a	detailed	view	for	all	the	past	deployments.	From	this	list	you	can	also	re-deploy	the	current
version,	or	even	rollback	an	old	stable	one	in	case	something	went	wrong.

Learn	more	about	history	of	an	environment

Environment-specific	variables

Limit	the	environment	scope	of	a	variable	by	defining	which	environments	it	can	be	available	for.

Learn	how	to	configure	environment-specific	variables

Group-level	variables

Define	variables	at	the	group	level	and	use	them	in	any	project	in	the	group.

Learn	how	to	configure	variables

Customizable	path	for	CI/CD	configuration

You	can	define	a	custom	path	into	your	repository	for	your	CI/CD	configuration	file.

Learn	how	to	configure	a	custom	CI/CD	configuration	file

Run	CI/CD	jobs	on	Windows

GitLab	Runner	supports	Windows	and	can	run	jobs	natively	on	this	platform.	You	can	automatically
build,	test,	and	deploy	Windows-based	projects	by	leveraging	PowerShell	or	batch	files.

Install	GitLab	Runner	on	Windows

Run	CI/CD	jobs	on	macOS

GitLab	Runner	supports	macOS	and	can	run	jobs	natively	on	this	platform.	You	can	automatically
build,	test,	and	deploy	for	macOS	based	projects	by	leveraging	shell	scripts	and	command	line
tools.

Install	GitLab	Runner	on	macOS

https://docs.gitlab.com/ee/ci/environments.html
https://docs.gitlab.com/ee/ci/environments.html#viewing-the-deployment-history-of-an-environment
https://docs.gitlab.com/ee/ci/variables/#limiting-environment-scopes-of-variables
https://docs.gitlab.com/ee/ci/variables/#variables
https://docs.gitlab.com/ee/user/project/pipelines/settings.html#custom-ci-config-path
https://docs.gitlab.com/runner/install/windows.html
https://docs.gitlab.com/runner/install/osx.html

Run	CI/CD	jobs	on	Linux	ARM

GitLab	Runner	supports	Linux	operating	systems	on	ARM	architectures	and	can	run	jobs	natively	on
this	platform.	You	can	automatically	build,	test,	and	deploy	for	Linux	ARM	based	projects	by
leveraging	shell	scripts	and	command	line	tools.

Install	GitLab	Runner	on	Linux

Run	CI/CD	jobs	on	FreeBSD

GitLab	Runner	supports	FreeBSD	and	can	run	jobs	natively	on	this	platform.	You	can	automatically
build,	test,	and	deploy	for	FreeBSD-based	projects	by	leveraging	shell	scripts	and	command	line
tools.

Install	GitLab	Runner	on	FreeBSD

Show	code	coverage	rate	for	your	pipelines

GitLab	is	able	to	parse	job	output	logs	and	search,	via	a	customizable	regex,	any	information	created
by	tools	like	SimpleCov	to	get	code	coverage.	Data	is	automatically	available	in	the	UI	and	also	as	a
badge	you	can	embedd	in	any	HTML	page	or	publish	using	GitLab	Pages.

Learn	how	to	generate	and	show	code	coverage	information	in	GitLab

Manage	JUnit	reports	created	by	CI	jobs

Many	languages	use	frameworks	that	automatically	run	tests	on	your	code	and	create	a	report:	one
example	is	the	JUnit	format	that	is	common	to	different	tools.	GitLab	supports	browsing	artifacts
and	you	can	download	reports,	but	we're	still	working	on	a	proper	way	to	integrate	them	directly
into	the	product.

Read	more	on	the	issue

Details	on	duration	for	each	command	execution	in	GitLab	CI/CD

Other	CI	systems	show	execution	time	for	each	single	command	run	in	CI	jobs,	not	just	the	overall
time.	We're	reconsidering	how	job	output	logs	are	managed	in	order	to	add	this	feature	as	well.

Read	more	on	the	issue

Auto	DevOps

Auto	DevOps	brings	DevOps	best	practices	to	your	project	by	automatically	configuring	software
development	lifecycles	by	default.	It	automatically	detects,	builds,	tests,	deploys,	and	monitors
applications.

Read	more	about	Auto	DevOps	in	the	documentation

https://docs.gitlab.com/runner/install/linux-manually.html
https://docs.gitlab.com/runner/install/freebsd.html
file:///2016/11/03/publish-code-coverage-report-with-gitlab-pages/
https://gitlab.com/gitlab-org/gitlab-ce/issues/34102
https://gitlab.com/gitlab-org/gitlab-runner/issues/2412
https://docs.gitlab.com/ee/topics/autodevops/

Protected	Runners

Protected	Runners	allow	you	to	protect	your	sensitive	information,	for	example	deployment
credentials,	by	allowing	only	jobs	running	on	protected	branches	to	access	them.

Read	more	on	the	issue

Easy	integration	of	existing	Kubernetes	clusters

Add	your	existing	Kubernetes	cluster	to	your	project,	and	easily	access	it	from	your	CI/CD	pipelines
to	host	Review	Apps	and	to	deploy	your	application.

Read	more	on	the	issue

Easy	creation	of	Kubernetes	clusters	on	GKE

Create	a	Kubernetes	cluster	on	GKE	directly	from	your	project,	just	connecting	your	Google	Account
and	providing	some	information.	The	cluster	can	be	used	also	by	Auto	DevOps	to	deploy	your
application.

Read	more	on	the	issue

Support	for	multiple	Kubernetes	clusters

Easily	deploy	different	environments,	like	Staging	and	Production,	to	different	Kubernetes	clusters.
This	allows	to	enforce	strict	data	separation.

Read	more	on	the	issue

Easy	Deployment	of	Helm,	Ingress,	and	Prometheus	on	Kubernetes

Install	Helm	Tiller,	Nginx	Ingress,	Prometheus	and	GitLab	Runner	directly	into	your	cluster	from	the
GitLab	Web	UI	with	one	click.

Read	through	the	documentation	on	installing	applications	on	GKE	clusters

Canary	Deployments

GitLab	Enterprise	Edition	Premium	can	monitor	your	Canary	Deployments	when	deploying	your
applications	with	Kubernetes.

Learn	more	about	configuring	Canary	Deployments

Automatic	Retry	for	Failed	CI	Jobs

You	can	specify	a	retry	keyword	in	your	.gitlab-ci.yml	file	to	make	GitLab	CI/CD	retry	a	job	for	a
specific	number	of	times	before	marking	it	as	failed.

Learn	more	about	Automatic	Retry	for	Failed	CI	Jobs

https://docs.gitlab.com/ee/ci/runners/#protected-runners
https://gitlab.com/gitlab-org/gitlab-ce/issues/35616
https://gitlab.com/gitlab-org/gitlab-ce/issues/35954
https://docs.gitlab.com/ee/user/project/clusters/#multiple-kubernetes-clusters
https://docs.gitlab.com/ee/user/project/clusters/index.html#installing-applications
https://docs.gitlab.com/ee/user/project/deploy_boards.html#canary-deployments
https://docs.gitlab.com/ee/ci/yaml/#retry

Pipelines	security

The	ability	of	running	CI/CD	pipelines	on	protected	branches	is	checked	against	a	set	of	security
rules	that	defines	if	you're	allowed	or	not.	It	includes	creating	new	pipelines,	retrying	jobs,	and
perform	manual	actions.

Learn	more	about	pipeline	security

Include	external	files	in	CI/CD	pipeline	definition

You	can	include	external	files	in	your	pipeline	definition	file,	using	them	as	templates	to	reuse
snippets	for	common	jobs.

Learn	more	about	including	external	files

Static	Application	Security	Testing

GitLab	allows	easily	running	Static	Application	Security	Testing	(SAST)	in	CI/CD	pipelines;	checking
for	vulnerable	source	code	or	well	known	security	bugs	in	the	libraries	that	are	included	by	the
application.	Results	are	then	shown	in	the	Merge	Request	and	in	the	Pipeline	view.	This	feature	is
available	as	part	of	[Auto	DevOps](https://docs.gitlab.com/ee/topics/autodevops/#auto-sast)	to
provide	security-by-default.

Learn	more	about	Static	Application	Security	Testing

Dependency	Scanning

GitLab	automatically	detects	well	known	security	bugs	in	the	libraries	that	are	included	by	the
application,	protecting	your	application	from	vulnerabilities	that	affect	dependencies	that	are	used
dynamically.	Results	are	then	shown	in	the	Merge	Request	and	in	the	Pipeline	view.	This	feature	is
available	as	part	of	[Auto	DevOps](https://docs.gitlab.com/ee/topics/autodevops/#auto-
dependency-scanning)	to	provide	security-by-default.

Learn	more	about	Dependency	Scanning

Container	Scanning

When	building	a	Docker	image	for	your	application,	GitLab	can	run	a	security	scan	to	ensure	it	does
not	have	any	known	vulnerability	in	the	environment	where	your	code	is	shipped.	Results	are	then
shown	in	the	Merge	Request	and	in	the	Pipeline	view.	This	feature	is	available	as	part	of	[Auto
DevOps](https://docs.gitlab.com/ee/topics/autodevops/#auto-container-scanning)	to	provide
security-by-default.

Learn	more	about	container	scanning

https://docs.gitlab.com/ee/user/project/new_ci_build_permissions_model.html
https://docs.gitlab.com/ee/ci/yaml/#include
https://docs.gitlab.com/ee/user/project/merge_requests/sast.html
https://docs.gitlab.com/ee/user/project/merge_requests/dependency_scanning.html
https://docs.gitlab.com/ee/user/project/merge_requests/container_scanning.html

Dynamic	Application	Security	Testing

Once	your	application	is	online,	GitLab	allows	running	Dynamic	Application	Security	Testing	(DAST)
in	CI/CD	pipelines;	your	application	will	be	scanned	to	ensure	threats	like	XSS	or	broken
authentication	flaws	are	not	affecting	it.	Results	are	then	shown	in	the	Merge	Request	and	in	the
Pipeline	view.	This	feature	is	available	as	part	of	[Auto	DevOps]
(https://docs.gitlab.com/ee/topics/autodevops/#auto-sast)	to	provide	security-by-default.

Learn	more	about	application	security	for	containers

Interactive	Application	Security	Testing

[IAST](https://blogs.gartner.com/neil_macdonald/2012/01/30/interactive-application-security-
testing/)	combines	elements	of	static	and	dynamic	application	security	testing	methods	to	improve
the	overall	quality	of	the	results.	IAST	typically	uses	an	agent	to	instrument	the	application	to
monitor	library	calls	and	more.	GitLab	does	not	yet	offer	this	feature.

Runtime	Application	Security	Testing

RASP	uses	an	agent	to	instrument	the	application	to	monitor	library	calls	as	the	application	is
running	in	production.	Unlike	other	security	tools,	RASP	can	take	action	to	block	threats	in	real-time,
similar	to	a	Web	Application	Firewall	but	from	within	the	app's	runtime	environment	rather	than	at
the	network	layer.	GitLab	does	not	yet	offer	this	feature.

Browser	Performance	Testing

Easily	detect	performance	regressions	for	web	apps,	prior	to	merging	into	master.	Browser
Performance	Testing	is	included	in	Auto	DevOps,	providing	automatic	performance	analytics	of	the
root	page	with	zero	configuration.

Learn	more	about	Browser	Performance	Testing

Step	folding	for	CI/CD	logs

Collapse	the	job	log	output	for	each	command.

Read	more	on	the	issue

View	Kubernetes	pod	logs

Quickly	and	easily	view	the	pod	logs	of	an	app	deployed	to	Kubernetes.

Learn	more	about	viewing	Kubernetes	pod	logs

https://docs.gitlab.com/ee/user/project/merge_requests/dast.html
https://docs.gitlab.com/ee/topics/autodevops/#auto-browser-performance-testing
https://docs.gitlab.com/ee/user/project/merge_requests/browser_performance_testing.html
https://gitlab.com/gitlab-org/gitlab-ce/issues/14664
https://docs.gitlab.com/ee/user/project/clusters/kubernetes_pod_logs.html

	Travis CI vs GitLab
	GitLab compared to other DevOps tools

