
Jenkins	vs	GitLab
GitLab	compared	to	other	DevOps	tools

On	this	page

Summary

Comments/Anecdotes

Resources

Pricing

Comparison

Summary

Jenkins	is	one	of	the	most	popular	self-managed	open	source	build	automation	and	CI/CD	developer	tool	in	the	world.	It	derives	it's
incredible	flexibility	from	incorporating	capabilities	from	it's	hundreds	of	available	plugins,	enabling	it	to	support	building,	deploying	and
automating	any	project.

At	the	Q3	2018	Jenkins	World	conference	CloudBees	(the	primary	maintainers	of	Jenkins)	announced	their	intention	to	revive	the
competitiveness	of	Jenkins	by	splitting	it	and	focusing	on	a	cloud	native	version,	as	well	as	a	simplified,	opinionated	version	(Jenkins
Evergreen).	There	is	also	a	Jenkins	sub-project	called	Jenkins	X,	meant	to	make	running	a	pipeline	out	of	the	box	with	Kubernetes	easier.

Jenkins	X	natively	integrates	Jenkins	CI/CD	server,	Kubernetes,	Helm,	and	other	tools	to	offer	a	prescriptive	CI/CD	pipeline	with	best
practices	built-in,	such	as	using	GitOps	to	manage	environments.	It	uses	deployment	of	Jenkins	into	Kubernetes	containers	to	get	around
the	complexities	of	installing	and	integrating	Jenkins.	However,	it	is	a	complex	pairing	of	many	tools	including	the	fragile	Jenkins	server.

In	contrast,	GitLab	already	provides	more	than	what	Jenkins	is	hoping	to	evolve	to,	by	providing	a	fully	integrated	single	application	for	the
entire	DevOps	lifecycle.	More	than	Jenkins'	goals,	GitLab	also	provides	planning,	SCM,	packaging,	release,	configuration,	and	monitoring	(in
addition	to	Cthe	I/CD	that	Jenkins	is	focused	on).

Comments/Anecdotes

Jenkinstein	-	From	the	article	DevOps	World	2018:	â€˜Jenkinsteinâ€™	and	a	Cloud	Native	Jenkins
Describing	the	snowflake	server	and	the	"Brent"	situation	and	how	it	slows	down	everything.	This	is	one	of	the	main	issues
which	Jenkins	users	face	today	and	which	Jenkins	has	no	easy	fix	for:

Acting	as	the	gatekeeper	for	that	channel	is	someone	CloudBees	CEO	Sacha	Labourey	described	as	â€œthe	Jenkins
guyâ€¦	this	superstar	devoted	to	making	Jenkins	great	on	his	team.	Because	this	person	is	the	authority	on
deployment	within	his	organization,	multiple	teams	come	to	rely	on	him	to	meet	their	scheduling	goals.	Yet	this	leads
to	a	technical	issue	that	few	folks	outside	of	IT	operations	take	time	to	consider:	The	Jenkins	Master	.	.	.	(the	server
managing	a	distributed	scheme	with	multiple	agents)	becomes	bloated,	like	an	old	telephone	directory	or	the
Windows	XP	System	Registry.

And	because	that	organizationâ€™s	Jenkins	deployment	is	not	only	dependent	upon	the	Guy,	but	somewhat	bound	to
his	choices	of	plug-ins,	the	result	is	what	the	CEO	called	â€œFrankenstein	Jenkins,â€ ​	and	what	other	developers	and
engineers	at	the	conference	Tuesday	had	dubbed	â€œJenkinstein.â€ ​

Again,	CloudBees	CEO	Sacha	Labourey	describing	the	common	problem	with	current	Jenkins:

Jenkins	becomes	bloated,	slow	to	start.	When	it	crashes,	it	takes	forever	to	start.	Hundreds	of	developers	are	pissed.
And	nobody	wants	to	fix	it,	because	if	you	touch	it,	you	own	it,	right?â€ ​

From	note	on	2018-08-31	from	CloudBees	CTO	and	Jenkins	creator	Kohsuke	Kawaguchi
(https://jenkins.io/blog/2018/08/31/shifting-gears/):

https://thenewstack.io/devops-world-2018-jenkinstein-and-a-cloud-native-jenkins/
http://devopsdictionary.com/wiki/Brent
https://jenkins.io/blog/2018/08/31/shifting-gears/

"Our	Challenges.	.	.	Service	instability.	.	.	Brittle	configuration.	.	.	Assembly	required.	.	.	Reduced	development	velocity.	.	."	(see
above	link	for	details	on	each)

"Path	forward.	.	.	Cloud	Native	Jenkins.	.	.	continue	the	incremental	evolution	of	Jenkins	2,	but	in	an	accelerated	speed"

Key	takeaways:
They	plan	on	BREAKING	backward	compatibility	in	their	upcoming	releases

They	plan	on	introducing	a	NEW	flavor	of	Jenkins	for	Cloud	native

If	youâ€™re	a	Jenkins	user	today,	itâ€™s	going	to	be	a	rough	ride	ahead

From	Jenkins	Evergreen	project	page	(identified	in	Kohsuke	letter	above	as	key	for	changes	that	need	to	come)	-
https://github.com/jenkinsci/jep/blob/master/jep/300/README.adoc

"Pillars	.	.	.	Automatically	Updated	Distribution	.	.	.	Automatic	Sane	Defaults.	.	.	Connected.	.	.	Obvious	Path	to	User	Success"

"The	"bucket	of	legos"	approach	is	.	.	.	not	productive	or	useful	for	end-users	[5]	who	are	weighing	their	options	between
running	Jenkins,	or	using	a	CI-as-a-Service	offering	such	as	Travis	CI	or	Circle	CI."

"existing	processes	around	"Suggested	Plugins",	or	any	others	for	that	matter,	result	in	many	"fiefdoms"	of	development	rather
than	a	shared	understanding	of	problems	and	solutions	which	should	be	addressed	to	make	new,	and	existing,	users	successful
with	Jenkins."

From	"Problem"	definition	page	of	Jenkins	Evergreen	project	page
(https://github.com/jenkinsci/jep/blob/master/jep/300/README.adoc#problem):

For	novice-to-intermediate	users,	the	time	necessary	to	prepare	a	Jenkins	environment	"from	scratch"	into	something
productive	for	common	CI/CD	workloads,	can	span	from	hours	to	days,	depending	on	their	understanding	of	Jenkins	and
itâ€™s	related	technologies.	The	preparation	of	the	environment	can	also	be	very	error	prone	and	require	significant	on-
going	maintenance	overhead	in	order	to	continue	to	stay	up-to-date,	secure,	and	productive.

Additionally,	many	Jenkins	users	suffer	from	a	paradox	of	choice	[6]	when	it	comes	to	deciding	which	plugins	should	be
combined,	in	which	ways,	and	how	they	should	be	configured,	in	order	to	construct	a	suitable	CI/CD	environment	for	their
projects.	While	this	is	related	to	the	problem	which	JEP-2	[7]	attempted	to	address	in	the	"Setup	Wizard"	introduced	in
Jenkins	2.0,	Jenkins	Evergreen	aims	to	address	the	broader	problem	of	providing	users	with	a	low-overhead,	easily
maintained,	and	solid	distribution	of	common	features	(provided	by	a	set	of	existing	plugins)	which	will	help	the	user	focus
on	building,	testing,	and	delivering	their	projects	rather	than	maintaining	Jenkins.

GitLab	blog	on	feedback	about	new	Jenkins	improvement	efforts	-	https://about.gitlab.com/2018/09/03/how-gitlab-ci-compares-
with-the-three-variants-of-jenkins/

Project	analysis	on	Jenkins,	pointed	to	by	CloudBees	documentation	as	proof	for	need	of	change	-
https://ghc.haskell.org/trac/ghc/wiki/ContinuousIntegration#Jenkins

Pros

We	can	run	build	nodes	on	any	architecture	and	OS	we	choose	to	set	up.

Cons

Security	is	low	on	PR	builds	unless	we	spend	further	effort	to	sandbox	builds	properly.	Moreover,	even	with
sandboxing,	Jenkins	security	record	is	troublesome.

Jenkins	is	well	known	to	be	time	consuming	to	set	up.

Additional	time	spent	setting	up	servers.

Additional	time	spent	maintaining	servers.

It	is	unclear	how	easy	it	is	to	make	the	set	up	reproducible.

The	set	up	is	not	forkable	(a	forker	would	need	to	set	up	their	own	servers).

From	GitLab	PMM

â€œJenkins	had	to	build	a	whole	new	separate	project	in	order	to	work	with	Kubernetes.	GitLab	has	natively	adopted
Kubernetes	from	the	get-go.â€ ​

https://github.com/jenkinsci/jep/blob/master/jep/300/README.adoc
https://github.com/jenkinsci/jep/blob/master/jep/300/README.adoc#problem
https://about.gitlab.com/2018/09/03/how-gitlab-ci-compares-with-the-three-variants-of-jenkins/
https://ghc.haskell.org/trac/ghc/wiki/ContinuousIntegration#Jenkins

Jenkins	X	adoption	is	tiny.	Most	folks	looking	to	go	to	Kubernetes	will	be	on	Jenkins	proper,	so	the	Pinterest	anecdote
applies.

Although	Jenkins	X	works	with	Kubernetes,	itâ€™s	not	a	single	application	like	GitLab.	You	still	have	to	integrate	to
your	PPM,	SCM,	security	tools,	etc.	You	have	to	manage	permissions	and	access	across	all	that	which	GitLab	gives	you
out	of	the	box,	but	Jenkins	X	does	not	(value	of	a	single	app).

Resources

Jenkins	OSS	Website	-	Open	Source	project	website

CloudBees	Jenkins	Website	-	https://www.cloudbees.com/products/cloudbees-core

Jenkins	X	Website

Pricing

Jenkins	OSS
No	cost	(and	Open	Source)

But	Total	Cost	of	Ownership	is	not	zero,	given	maintenance	requirements

CloudBees	Jenkins	(vague)	-	https://www.cloudbees.com/products/pricing
CloudBees	Core	-	Jenkins	distribution	with	upgrade	assistance	on	monthly	incremental	upgrades,	cloud	native	architecture,
centralized	management,	24/7	support	and	training,	enterprise-grade	security	and	multi-tenancy,	and	plugin	compatibility
testing

starting	at	$20k/year	for	10	users,	with	tiered	pricing	for	lower	per-user	cost	for	larger	organizations

Jenkins	X
No	cost	(and	Open	Source)

But	Total	Cost	of	Ownership	has	cost	(see	Pinterest	anecdote)

Comparison

FEATURES

Built-in	CI/CD

GitLab	has	built-in	Continuous	Integration/Continuous	Delivery,	for	free,	no	need	to	install	it
separately.	Use	it	to	build,	test,	and	deploy	your	website	(GitLab	Pages)	or	webapp.	The	job
results	are	displayed	on	merge	requests	for	easy	access.

Learn	more	about	CI/CD

Application	performance	monitoring

GitLab	collects	and	displays	performance	metrics	for	deployed	apps,	leveraging	Prometheus.
Developers	can	determine	the	impact	of	a	merge	and	keep	an	eye	on	their	production	systems,
without	leaving	GitLab.

Learn	more	about	monitoring	deployed	apps

file:///handbook/marketing/product-marketing/#deliver-value-faster
file:///handbook/product/single-application/
https://jenkins.io/
https://www.cloudbees.com/products/cloudbees-core
https://jenkins-x.io/
file:///handbook/marketing/product-marketing/customer-reference-program/#deliver-value-faster
file:///features/gitlab-ci-cd/
https://docs.gitlab.com/ee/user/project/integrations/prometheus.html

Application	performance	alerts

GitLab	allows	engineers	to	seamlessly	create	service	level	indicator	alerts	and	be	notified	of	any
desired	events,	all	within	the	same	workflow	where	they	write	their	code.

Learn	more	about	creating	SLI	alerts

GitLab	server	monitoring

GitLab	comes	out	of	the	box	enabled	for	Prometheus	monitoring	with	extensive
instrumentation,	making	it	easy	to	ensure	your	GitLab	deployment	is	responsive	and	healthy.

Learn	more	about	monitoring	the	GitLab	service

Cycle	Analytics

GitLab	provides	a	dashboard	that	lets	teams	measure	the	time	it	takes	to	go	from	planning	to
monitoring.	GitLab	can	provide	this	data	because	it	has	all	the	tools	built-in:	from	the	idea,	to
the	CI,	to	code	review,	to	deploy	to	production.

Learn	more	about	Cycle	Analytics

Built-in	Container	Registry

GitLab	Container	Registry	is	a	secure	and	private	registry	for	Docker	images.	It	allows	for	easy
upload	and	download	of	images	from	GitLab	CI.	It	is	fully	integrated	with	Git	repository
management.

Documentation	on	Container	Registry

Preview	your	changes	with	Review	Apps

With	GitLab	CI/CD	you	can	create	a	new	environment	for	each	one	of	your	branches,	speeding
up	your	development	process.	Spin	up	dynamic	environments	for	your	merge	requests	with	the
ability	to	preview	your	branch	in	a	live	environment.

Learn	more	about	Review	Apps

A	comprehensive	API

GitLab	provides	APIs	for	most	features,	allowing	developers	to	create	deeper	integrations	with
the	product.

Read	our	API	Documentation

https://docs.gitlab.com/ee/user/project/integrations/prometheus.html#setting-an-alert
https://docs.gitlab.com/ee/administration/monitoring/prometheus/index.html
file:///features/cycle-analytics/
https://docs.gitlab.com/ee/user/project/container_registry.html
file:///features/review-apps/
https://docs.gitlab.com/ee/api/

CI/CD	Horizontal	Autoscaling

GitLab	CI/CD	cloud	native	architecture	can	easily	scale	horizontally	by	adding	new	nodes	if	the
workload	increases.	GitLab	Runners	can	automatically	spin	up	and	down	new	containers	to
ensure	pipelines	are	processed	immediately	and	minimize	costs.

Learn	more	about	GitLab	CI/CD	Horizontal	Autoscaling

Built	for	containers	and	Docker

GitLab	ships	with	its	own	Container	Registry,	Docker	CI	Runner,	and	is	ready	for	a	complete
CI/CD	container	workflow.	There	is	no	need	to	install,	configure,	or	maintain	additional	plugins.

Cloud	Native

GitLab	and	its	CI/CD	is	Cloud	Native,	purpose	built	for	the	cloud	model.	GitLab	can	be	easily
deployed	on	Kubernetes	and	used	to	deploy	your	application	to	Kubernetes	with	support
support	out	of	the	box.

Kubernetes	integration

Container	debugging	with	an	integrated	web	terminal

Easily	debug	your	containers	in	any	of	your	environments	using	the	built-in	GitLab	Web
Terminal.	GitLab	can	open	a	terminal	session	directly	from	your	environment	if	your	application
is	deployed	on	Kubernetes.	This	is	a	very	powerful	feature	where	you	can	quickly	debug	issues
without	leaving	the	comfort	of	your	web	browser.

Learn	more	about	the	web	terminal

Comprehensive	pipeline	graphs

Pipelines	can	be	complex	structures	with	many	sequential	and	parallel	jobs.	To	make	it	a	little
easier	to	see	what	is	going	on,	you	can	view	a	graph	of	a	single	pipeline	and	its	status.

Learn	more	about	pipeline	graphs

Browsable	artifacts

With	GitLab	CI	you	can	upload	your	job	artifacts	in	GitLab	itself	without	the	need	of	an	external
service.	Because	of	this,	artifacts	are	also	browsable	through	GitLab's	web	interface.

Learn	more	about	using	job	artifacts	in	your	project

Scheduled	triggering	of	pipelines

You	can	make	your	pipelines	run	on	a	schedule	in	a	cron-like	environment.

Learn	how	to	trigger	pipelines	on	a	schedule	in	GitLab

https://docs.gitlab.com/runner/configuration/autoscale.html#overview
file:///kubernetes/
https://docs.gitlab.com/ee/ci/environments.html#web-terminals
https://docs.gitlab.com/ee/ci/pipelines.html#pipeline-graphs
https://docs.gitlab.com/ee/user/project/pipelines/job_artifacts.html
https://docs.gitlab.com/ee/ci/triggers/#using-scheduled-triggers

Code	Quality

Code	Quality	reports,	available	in	the	merge	request	widget	area,	give	you	an	early	insight	into
how	the	change	will	affect	the	health	of	your	code	before	deciding	if	you	want	to	accept	it.

Learn	more	about	Code	Quality	reports

Multi-project	pipeline	graphs

With	multi-project	pipeline	graphs	you	can	see	how	upstream	and	downstream	pipelines	are
linked	together	for	projects	that	are	linked	to	others	via	triggers	as	part	of	a	more	complex
design,	as	it	is	for	micro-services	architecture.

Learn	more	about	multi-project	pipeline	graphs

Protected	variables

You	can	mark	a	variable	as	"protected"	to	make	it	available	only	to	jobs	running	on	protected
branches,	therefore	only	authorized	users	can	get	access	to	it.

Learn	how	to	use	protected	variables

Environments	and	deployments

GitLab	CI	is	capable	of	not	only	testing	or	building	your	projects,	but	also	deploying	them	in
your	infrastructure,	with	the	added	benefit	of	giving	you	a	way	to	track	your	deployments.
Environments	are	like	tags	for	your	CI	jobs,	describing	where	code	gets	deployed.

Learn	more	about	environments

Environments	history

Environments	history	allows	you	to	see	what	is	currently	being	deployed	on	your	servers,	and
to	access	a	detailed	view	for	all	the	past	deployments.	From	this	list	you	can	also	re-deploy	the
current	version,	or	even	rollback	an	old	stable	one	in	case	something	went	wrong.

Learn	more	about	history	of	an	environment

Environment-specific	variables

Limit	the	environment	scope	of	a	variable	by	defining	which	environments	it	can	be	available
for.

Learn	how	to	configure	environment-specific	variables

Group-level	variables

Define	variables	at	the	group	level	and	use	them	in	any	project	in	the	group.

Learn	how	to	configure	variables

https://docs.gitlab.com/ee/user/project/merge_requests/code_quality_diff.html
https://docs.gitlab.com/ee/ci/multi_project_pipeline_graphs.html
https://docs.gitlab.com/ee/ci/variables/#protected-variables
https://docs.gitlab.com/ee/ci/environments.html
https://docs.gitlab.com/ee/ci/environments.html#viewing-the-deployment-history-of-an-environment
https://docs.gitlab.com/ee/ci/variables/#limiting-environment-scopes-of-variables
https://docs.gitlab.com/ee/ci/variables/#variables

Customizable	path	for	CI/CD	configuration

You	can	define	a	custom	path	into	your	repository	for	your	CI/CD	configuration	file.

Learn	how	to	configure	a	custom	CI/CD	configuration	file

Run	CI/CD	jobs	on	Windows

GitLab	Runner	supports	Windows	and	can	run	jobs	natively	on	this	platform.	You	can
automatically	build,	test,	and	deploy	Windows-based	projects	by	leveraging	PowerShell	or
batch	files.

Install	GitLab	Runner	on	Windows

Run	CI/CD	jobs	on	macOS

GitLab	Runner	supports	macOS	and	can	run	jobs	natively	on	this	platform.	You	can
automatically	build,	test,	and	deploy	for	macOS	based	projects	by	leveraging	shell	scripts	and
command	line	tools.

Install	GitLab	Runner	on	macOS

Run	CI/CD	jobs	on	Linux	ARM

GitLab	Runner	supports	Linux	operating	systems	on	ARM	architectures	and	can	run	jobs	natively
on	this	platform.	You	can	automatically	build,	test,	and	deploy	for	Linux	ARM	based	projects	by
leveraging	shell	scripts	and	command	line	tools.

Install	GitLab	Runner	on	Linux

Run	CI/CD	jobs	on	FreeBSD

GitLab	Runner	supports	FreeBSD	and	can	run	jobs	natively	on	this	platform.	You	can
automatically	build,	test,	and	deploy	for	FreeBSD-based	projects	by	leveraging	shell	scripts	and
command	line	tools.

Install	GitLab	Runner	on	FreeBSD

Show	code	coverage	rate	for	your	pipelines

GitLab	is	able	to	parse	job	output	logs	and	search,	via	a	customizable	regex,	any	information
created	by	tools	like	SimpleCov	to	get	code	coverage.	Data	is	automatically	available	in	the	UI
and	also	as	a	badge	you	can	embedd	in	any	HTML	page	or	publish	using	GitLab	Pages.

Learn	how	to	generate	and	show	code	coverage	information	in	GitLab

https://docs.gitlab.com/ee/user/project/pipelines/settings.html#custom-ci-config-path
https://docs.gitlab.com/runner/install/windows.html
https://docs.gitlab.com/runner/install/osx.html
https://docs.gitlab.com/runner/install/linux-manually.html
https://docs.gitlab.com/runner/install/freebsd.html
file:///2016/11/03/publish-code-coverage-report-with-gitlab-pages/

Manage	JUnit	reports	created	by	CI	jobs

Many	languages	use	frameworks	that	automatically	run	tests	on	your	code	and	create	a	report:
one	example	is	the	JUnit	format	that	is	common	to	different	tools.	GitLab	supports	browsing
artifacts	and	you	can	download	reports,	but	we're	still	working	on	a	proper	way	to	integrate
them	directly	into	the	product.

Read	more	on	the	issue

Details	on	duration	for	each	command	execution	in	GitLab	CI/CD

Other	CI	systems	show	execution	time	for	each	single	command	run	in	CI	jobs,	not	just	the
overall	time.	We're	reconsidering	how	job	output	logs	are	managed	in	order	to	add	this	feature
as	well.

Read	more	on	the	issue

Auto	DevOps

Auto	DevOps	brings	DevOps	best	practices	to	your	project	by	automatically	configuring
software	development	lifecycles	by	default.	It	automatically	detects,	builds,	tests,	deploys,	and
monitors	applications.

Read	more	about	Auto	DevOps	in	the	documentation

Protected	Runners

Protected	Runners	allow	you	to	protect	your	sensitive	information,	for	example	deployment
credentials,	by	allowing	only	jobs	running	on	protected	branches	to	access	them.

Read	more	on	the	issue

Easy	integration	of	existing	Kubernetes	clusters

Add	your	existing	Kubernetes	cluster	to	your	project,	and	easily	access	it	from	your	CI/CD
pipelines	to	host	Review	Apps	and	to	deploy	your	application.

Read	more	on	the	issue

Easy	creation	of	Kubernetes	clusters	on	GKE

Create	a	Kubernetes	cluster	on	GKE	directly	from	your	project,	just	connecting	your	Google
Account	and	providing	some	information.	The	cluster	can	be	used	also	by	Auto	DevOps	to
deploy	your	application.

Read	more	on	the	issue

https://gitlab.com/gitlab-org/gitlab-ce/issues/34102
https://gitlab.com/gitlab-org/gitlab-runner/issues/2412
https://docs.gitlab.com/ee/topics/autodevops/
https://docs.gitlab.com/ee/ci/runners/#protected-runners
https://gitlab.com/gitlab-org/gitlab-ce/issues/35616
https://gitlab.com/gitlab-org/gitlab-ce/issues/35954

Support	for	multiple	Kubernetes	clusters

Easily	deploy	different	environments,	like	Staging	and	Production,	to	different	Kubernetes
clusters.	This	allows	to	enforce	strict	data	separation.

Read	more	on	the	issue

Easy	Deployment	of	Helm,	Ingress,	and	Prometheus	on	Kubernetes

Install	Helm	Tiller,	Nginx	Ingress,	Prometheus	and	GitLab	Runner	directly	into	your	cluster	from
the	GitLab	Web	UI	with	one	click.

Read	through	the	documentation	on	installing	applications	on	GKE	clusters

Canary	Deployments

GitLab	Enterprise	Edition	Premium	can	monitor	your	Canary	Deployments	when	deploying	your
applications	with	Kubernetes.

Learn	more	about	configuring	Canary	Deployments

Minimal	CI/CD	configuration

GitLab	CI/CD	requires	less	configuration	for	your	pipelines	than	other	similar	setups	like
Jenkins.

Learn	more	about	GitLab	CI/CD

Automatic	Retry	for	Failed	CI	Jobs

You	can	specify	a	retry	keyword	in	your	.gitlab-ci.yml	file	to	make	GitLab	CI/CD	retry	a	job	for	a
specific	number	of	times	before	marking	it	as	failed.

Learn	more	about	Automatic	Retry	for	Failed	CI	Jobs

Pipelines	security

The	ability	of	running	CI/CD	pipelines	on	protected	branches	is	checked	against	a	set	of	security
rules	that	defines	if	you're	allowed	or	not.	It	includes	creating	new	pipelines,	retrying	jobs,	and
perform	manual	actions.

Learn	more	about	pipeline	security

Include	external	files	in	CI/CD	pipeline	definition

You	can	include	external	files	in	your	pipeline	definition	file,	using	them	as	templates	to	reuse
snippets	for	common	jobs.

Learn	more	about	including	external	files

https://docs.gitlab.com/ee/user/project/clusters/#multiple-kubernetes-clusters
https://docs.gitlab.com/ee/user/project/clusters/index.html#installing-applications
https://docs.gitlab.com/ee/user/project/deploy_boards.html#canary-deployments
file:///features/gitlab-ci-cd/
https://docs.gitlab.com/ee/ci/yaml/#retry
https://docs.gitlab.com/ee/user/project/new_ci_build_permissions_model.html
https://docs.gitlab.com/ee/ci/yaml/#include

Step	folding	for	CI/CD	logs

Collapse	the	job	log	output	for	each	command.

Read	more	on	the	issue

View	Kubernetes	pod	logs

Quickly	and	easily	view	the	pod	logs	of	an	app	deployed	to	Kubernetes.

Learn	more	about	viewing	Kubernetes	pod	logs

https://gitlab.com/gitlab-org/gitlab-ce/issues/14664
https://docs.gitlab.com/ee/user/project/clusters/kubernetes_pod_logs.html

	Jenkins vs GitLab
	GitLab compared to other DevOps tools
	On this page
	Summary
	Comments/Anecdotes
	Resources
	Pricing
	Comparison

