
Bamboo	vs	GitLab
GitLab	compared	to	other	DevOps	tools

On	this	page

Summary

Comments/Anecdotes

Resources

Pricing

Comparison

Summary

Bamboo	Server	is	a	CI/CD	solution	which	is	part	of	the	Atlassian	suite	of	developer	tools.	It	is	available	only	in	a	self-managed	configuration
and	is	a	closed	source	solution.	Bamboo	offers	build,	test,	and	deployment	automation,	and	has	tight	integrations	to	Atlassian	BitBucket
(for	SCM)	and	Fisheye	(for	understanding	how	source	code	has	changed),	as	well	as	integrations	to	over	150	other	tools.	In	contrast,	GitLab
offers	a	git-based	SCM,	SCM	integrations,	and	code	change	traceability	out	of	the	box	in	a	single	application.

Bamboo	offers	a	GUI	for	defining	build	plans,	but	does	not	offer	pipeline	as	code.	Bamboo	also	offers	deployment	plans	(which	include	the
notion	of	environments	and	releases),	pre-deployment	visibility,	and	per-environment	deployment	permissions.	GitLab	also	offers	release
tracking	across	environments	and	deep	visibility	into	the	changes	in	a	deployment,	but	sets	deployment	permissions	based	on	branch
permissions.

Bamboo	steps	can	be	run	in	parallel	across	agents,	and	those	agents	can	be	auto-scaled	based	on	need	if	Bamboo	is	configured	for	a
feature	called	Elastic	Bamboo.	Elastic	Bamboo	requires	the	use	of	"remote	agents",	which	you	pay	extra	for	(see	pricing).	Organizations	who
want	auto-scaling	are	also	locked	in	to	using	Amazon	Elastic	Compute	Cloud	(EC2)	and	paying	Amazon	separately	for	their	usage.	In
contrast,	GitLab	does	not	charge	per	remote	agent	(runner)	and	scales	with	a	variety	of	cloud	and	container	solutions.

Comments/Anecdotes

Discussion	from	HackerNews	article	about	Atlassian	not	allowing	benchmarking

Atlassian	has	always	forbidden	to	talk	about	the	performance	of	their	products	in	their	ToS	and	in	their	previous	EULA.	We	all
know	why,	but	we	donâ€™t	talk	about	it.

Sales	heard	from	large	networking	company

"Terrible!,	All	UI	Based,	Cannot	configure	'as	code'	(ala	.gitlab-ci.yml)"

Sales	previous	experience)

Previously	we	beat	Bamboo	by	the	reason	that	itâ€™s	too	prescripted	for	build	only.

This	is	likely	no	longer	true	as	they	now	have	deployment	specific	features	including	environments,	deployment	groups,	and	per-
environment	deployment	permissions

From	Twitter:

"we	have	also	started	using	GitLab	(moving	from	our	own	BitBucket/Bamboo	servers).	The	CI/CD	is	definitely	an	improvement
but	I'm	not	sold	on	the	code	review	features	of	GitLab"
https://twitter.com/carrchr/status/1003651960099176448

"Sweet.	Unlike	Atlassian's	Bamboo,	@GitLab	CI	supports	"[ci	skip]"	out	of	the	box.	#gitlab	#devtools	#success"

https://confluence.atlassian.com/bamboo/configuring-elastic-bamboo-289277120.html
https://news.ycombinator.com/item?id=18103162#18103813
https://twitter.com/carrchr/status/1003651960099176448

https://twitter.com/tekkie/status/823689378371342336

"Nice	and	simple	GUI	in	@GitLab	CI	as	well.	Much	easier	to	navigate	than	Bamboo	for	instance.	#gitlab	#gui	#ux	#success"
https://twitter.com/tekkie/status/839054544009117696

"Seriously,	is	still	there	a	reason	to	use	Jenkins/Hudson/TeamCity/Bamboo?	I	reckon	@GitLab	built-in	CI	support	is	sufficient	for
most	of	us!"
https://twitter.com/AriyaHidayat/status/756919101587546112

"A	day	building	pipelines	in	VSTS	for	one	of	my	teams.	Get	the	feeling	that	while	I	find	it	simple	not	everyone	finds	it	the	same.
Better	than	Gitlab	CI	(IMO)	but	I	like	Bamboo	a	lot	tooâ€¦"
https://twitter.com/xyglo/status/978291270161457152

From	Bamboo	open	Issues

Issue:	If	I	want	to	use	git	submodules	then	I	shouldn't	have	to	upload	and	configure	SSH	keys	on	each	Bamboo	Agent.
Key	text:	"Bamboo	requires	separate	Git	authentication	for	submodules.	This	involves	either	using	HTTPS	for
submodules	and	providing	the	credentials	through	the	job's	environment	variables,	or	configuring	separate	SSH	keys	on
each	build	agent.	Using	HTTPS	would	render	local	builds	unusable,	requiring	credentials	every	time.	Adding	SSH	keys	to
every	Bamboo	agent	is	unmaintainable.	.	.	.	This	reason,	among	others	is	a	large	part	of	why	we	have	migrated	away	from
Bamboo.	We	now	use	Gitlab	and	Gitlab	CI	for	much	better	Docker	and	git	support."

Link:	Bamboo	Issue	in	Jira

Resources

Atlassian	Bamboo	Website

Pricing

Price	page

Bamboo	Pricing	Guide
(includes	price	additions	for	remote	agents,	and	academic	pricing)

Small	Teams	-	$10/month	-	only	10	jobs	and	no	remote	agents

Growing	Teams	-	$880/month	-	unlimited	jobs,	1	remote	agent

pricing	increase	in	tiers	by	#	remote	agents	(1,	5,	10,	25,	100,	250,	500,	1000)	(see	Bamboo	Pricing	Guide	for	prices)

First	purchase	includes	perpetual	software	and	1	yr	maintenance.	Yearly	cost	for	maintenance	is	approximately	50%	of	initial	remote
agent	tier	cost.	(e.g.	1st	year	@25	remote	agents	=	$8,800,	second	year	maintenance	=	$4,400)

Comparison

FEATURES

Built-in	CI/CD

GitLab	has	built-in	Continuous	Integration/Continuous	Delivery,	for	free,	no	need	to	install	it
separately.	Use	it	to	build,	test,	and	deploy	your	website	(GitLab	Pages)	or	webapp.	The	job	results
are	displayed	on	merge	requests	for	easy	access.

Learn	more	about	CI/CD

Runs	with	less	memory	and	consumes	less	CPU	power

Uses	little	memory,	it	runs	fine	with	512MB.	Uses	little	CPU	power	since	Go	is	a	compiled	language

https://twitter.com/tekkie/status/823689378371342336
https://twitter.com/tekkie/status/839054544009117696
https://twitter.com/AriyaHidayat/status/756919101587546112
https://twitter.com/xyglo/status/978291270161457152
https://jira.atlassian.com/browse/BAM-11369?focusedCommentId=1588832&page=com.atlassian.jira.plugin.system.issuetabpanels%253Acomment-tabpanel#comment-1588832
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo/pricing
https://www.atlassian.com/licensing/bamboo#serverlicenses-3
file:///features/gitlab-ci-cd/

Application	performance	monitoring

GitLab	collects	and	displays	performance	metrics	for	deployed	apps,	leveraging	Prometheus.
Developers	can	determine	the	impact	of	a	merge	and	keep	an	eye	on	their	production	systems,
without	leaving	GitLab.

Learn	more	about	monitoring	deployed	apps

GitLab	server	monitoring

GitLab	comes	out	of	the	box	enabled	for	Prometheus	monitoring	with	extensive	instrumentation,
making	it	easy	to	ensure	your	GitLab	deployment	is	responsive	and	healthy.

Learn	more	about	monitoring	the	GitLab	service

Cycle	Analytics

GitLab	provides	a	dashboard	that	lets	teams	measure	the	time	it	takes	to	go	from	planning	to
monitoring.	GitLab	can	provide	this	data	because	it	has	all	the	tools	built-in:	from	the	idea,	to	the	CI,
to	code	review,	to	deploy	to	production.

Learn	more	about	Cycle	Analytics

Preview	your	changes	with	Review	Apps

With	GitLab	CI/CD	you	can	create	a	new	environment	for	each	one	of	your	branches,	speeding	up
your	development	process.	Spin	up	dynamic	environments	for	your	merge	requests	with	the	ability
to	preview	your	branch	in	a	live	environment.

Learn	more	about	Review	Apps

A	comprehensive	API

GitLab	provides	APIs	for	most	features,	allowing	developers	to	create	deeper	integrations	with	the
product.

Read	our	API	Documentation

CI/CD	Horizontal	Autoscaling

GitLab	CI/CD	cloud	native	architecture	can	easily	scale	horizontally	by	adding	new	nodes	if	the
workload	increases.	GitLab	Runners	can	automatically	spin	up	and	down	new	containers	to	ensure
pipelines	are	processed	immediately	and	minimize	costs.

Learn	more	about	GitLab	CI/CD	Horizontal	Autoscaling

https://docs.gitlab.com/ee/user/project/integrations/prometheus.html
https://docs.gitlab.com/ee/administration/monitoring/prometheus/index.html
file:///features/cycle-analytics/
file:///features/review-apps/
https://docs.gitlab.com/ee/api/
https://docs.gitlab.com/runner/configuration/autoscale.html#overview

Cloud	Native

GitLab	and	its	CI/CD	is	Cloud	Native,	purpose	built	for	the	cloud	model.	GitLab	can	be	easily
deployed	on	Kubernetes	and	used	to	deploy	your	application	to	Kubernetes	with	support	support
out	of	the	box.

Kubernetes	integration

Container	debugging	with	an	integrated	web	terminal

Easily	debug	your	containers	in	any	of	your	environments	using	the	built-in	GitLab	Web	Terminal.
GitLab	can	open	a	terminal	session	directly	from	your	environment	if	your	application	is	deployed
on	Kubernetes.	This	is	a	very	powerful	feature	where	you	can	quickly	debug	issues	without	leaving
the	comfort	of	your	web	browser.

Learn	more	about	the	web	terminal

Comprehensive	pipeline	graphs

Pipelines	can	be	complex	structures	with	many	sequential	and	parallel	jobs.	To	make	it	a	little	easier
to	see	what	is	going	on,	you	can	view	a	graph	of	a	single	pipeline	and	its	status.

Learn	more	about	pipeline	graphs

Online	visualization	of	HTML	artifacts

Access	your	test	reports,	code	quality	and	coverage	information	directly	from	your	browser,	with	no
need	to	download	them	locally.

Learn	more	about	using	job	artifacts	in	your	project

Browsable	artifacts

With	GitLab	CI	you	can	upload	your	job	artifacts	in	GitLab	itself	without	the	need	of	an	external
service.	Because	of	this,	artifacts	are	also	browsable	through	GitLab's	web	interface.

Learn	more	about	using	job	artifacts	in	your	project

Scheduled	triggering	of	pipelines

You	can	make	your	pipelines	run	on	a	schedule	in	a	cron-like	environment.

Learn	how	to	trigger	pipelines	on	a	schedule	in	GitLab

Code	Quality

Code	Quality	reports,	available	in	the	merge	request	widget	area,	give	you	an	early	insight	into	how
the	change	will	affect	the	health	of	your	code	before	deciding	if	you	want	to	accept	it.

Learn	more	about	Code	Quality	reports

file:///kubernetes/
https://docs.gitlab.com/ee/ci/environments.html#web-terminals
https://docs.gitlab.com/ee/ci/pipelines.html#pipeline-graphs
https://docs.gitlab.com/ee/user/project/pipelines/job_artifacts.html
https://docs.gitlab.com/ee/user/project/pipelines/job_artifacts.html
https://docs.gitlab.com/ee/ci/triggers/#using-scheduled-triggers
https://docs.gitlab.com/ee/user/project/merge_requests/code_quality_diff.html

Multi-project	pipeline	graphs

With	multi-project	pipeline	graphs	you	can	see	how	upstream	and	downstream	pipelines	are	linked
together	for	projects	that	are	linked	to	others	via	triggers	as	part	of	a	more	complex	design,	as	it	is
for	micro-services	architecture.

Learn	more	about	multi-project	pipeline	graphs

Protected	variables

You	can	mark	a	variable	as	"protected"	to	make	it	available	only	to	jobs	running	on	protected
branches,	therefore	only	authorized	users	can	get	access	to	it.

Learn	how	to	use	protected	variables

Deployment	projects

A	deployment	project	holds	the	software	project	you	are	deploying:	releases	that	have	been	built
and	tested,	and	the	environments	to	which	releases	are	deployed.

Learn	about	GitLab	projects

Environments	and	deployments

GitLab	CI	is	capable	of	not	only	testing	or	building	your	projects,	but	also	deploying	them	in	your
infrastructure,	with	the	added	benefit	of	giving	you	a	way	to	track	your	deployments.	Environments
are	like	tags	for	your	CI	jobs,	describing	where	code	gets	deployed.

Learn	more	about	environments

Per-environment	permissions

Developers	and	QA	can	deploy	to	their	own	environments	on	demand	while	production	stays	locked
down.	Build	engineers	and	ops	teams	spend	less	time	servicing	deploy	requests,	and	can	gate	what
goes	into	production.

Learn	about	protected	branches	in	GitLab

Environments	history

Environments	history	allows	you	to	see	what	is	currently	being	deployed	on	your	servers,	and	to
access	a	detailed	view	for	all	the	past	deployments.	From	this	list	you	can	also	re-deploy	the	current
version,	or	even	rollback	an	old	stable	one	in	case	something	went	wrong.

Learn	more	about	history	of	an	environment

https://docs.gitlab.com/ee/ci/multi_project_pipeline_graphs.html
https://docs.gitlab.com/ee/ci/variables/#protected-variables
https://docs.gitlab.com/ee/user/project/
https://docs.gitlab.com/ee/ci/environments.html
https://docs.gitlab.com/ee/user/project/protected_branches.html
https://docs.gitlab.com/ee/ci/environments.html#viewing-the-deployment-history-of-an-environment

Environment-specific	variables

Limit	the	environment	scope	of	a	variable	by	defining	which	environments	it	can	be	available	for.

Learn	how	to	configure	environment-specific	variables

Group-level	variables

Define	variables	at	the	group	level	and	use	them	in	any	project	in	the	group.

Learn	how	to	configure	variables

Bad	Test	Quarantine

Don't	let	red	builds	become	the	norm.	Across	all	tests,	keep	flakey	or	broken	tests	out	of	sight	(but
not	out	of	mind),	and	keep	the	build	green	with	one-click	quarantine	of	tests.

Learn	how	to	dismiss	vulnerabilities	in	GitLab

https://docs.gitlab.com/ee/ci/variables/#limiting-environment-scopes-of-variables
https://docs.gitlab.com/ee/ci/variables/#variables
https://docs.gitlab.com/ee/user/project/merge_requests/#interacting-with-security-reports

	Bamboo vs GitLab
	GitLab compared to other DevOps tools
	On this page
	Summary
	Comments/Anecdotes
	Resources
	Pricing
	Comparison

